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Preface

The experimental studies of strongly interacting matter produced in ultra-
relativistic heavy-ion collisions belong to the avant-garde of contemporary high-
energy physics. This new and vastly developing field requires theoretical under-
standing how new experimental phenomena are related to the physical properties
of the created system. This book delivers foundations of such understanding — it
shows the links between basic theoretical concepts, discussed gradually from the
elementary to more advanced level, and the results of experiments. In this way, I
hope, experimentalists may learn more about the foundations of the models used
by them to fit and interpret the data, while theoreticians may learn more about
practical applications of their ideas. )

The book emphasizes the role played in the interpretation of the experimental
results by thermodynamics, relativistic hydrodynamics, and relativistic kinetic the-
ory. These frameworks are used to analyze the soft hadron production, i.e., the
production of hadrons with relatively small transverse momenta with respect to the
collision axis. Soft hadrons contribute to more than 90% of the produced particles
and their measured properties reveal information about the bulk properties of the
very hot and dense system formed at the early stages of collisions — an interacting
quark-gluon plasma.

A discussion of hard phenomena, i.e., the production of hadrons with large
transverse momenta, has been omitted (except for the general comments concerning
the jet quenching). Certainly, the role of hard processes is becoming more and more
important with the increasing beam energy, however, their discussion would double
the size of the present book.

The successful application of the perfect-fluid hydrodynamics in description of
ultra-relativistic heavy-ion collisions allows us to establish a uniform picture of
these complicated processes. In some sense we are lucky that such complex systems
may be described within a concise and well-defined framework. The perfect-fluid
hydrodynamics, combined with the modeling of the initial state by the Glauber
model or the color glass condensate on one side, and supplemented by the kinetic
simulations of the freeze-out process on the other side, forms the foundation of an
approach that may be regarded as the standard model of ultra-relativistic heavy-ion
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collisions.

Yet, several shortcomings of the hydrodynamic approach indicate directions for
many current and new investigations. To list a few: The problem of very early
equilibration of matter formed in heavy-ion collisions is discussed in a very broad
context including more elementary processes such as e™e™ annihilation. Difficulties
connected with the correct description of the correlations form a challenge for con-
sistent modeling of the momentum and spacetime distributions of particles. Finally,
the role of the viscosity and other dissipative effects should be elucidated. By the
way, the recent developments in the field of dissipative hydrodynamics are examples
of the permanent progress that is taking place in the heavy-ion physics. Again, due
to the limited space, the issues of the viscous hydrodynamics have not been covered
in this book. However, the perfect-fluid hydrodynamics was analyzed in greater
detail, allowing all newcomers to enter this field very fast.

My intention was to write a possibly self-explanatory book, therefore, the chap-
ters describing general formalism of the kinetic theory and hydrodynamics have
been included. Moreover, the book has a modular structure where different parts
and chapters may be read independently. I think this would be useful for young
researches in the field who may find all the necessary information, usually scattered
among various textbooks, in one volume. Nevertheless, I assume that the reader
knows basic facts from the special theory of relativity, electrodynamics, quantum
mechanics, statistical physics, and elementary-particle physics. Basic acquaintance
with Feynman diagrams is necessary for reading the chapter about electromagnetic
signals. About 50 exercises have been included, which appear after each part. They
should help the reader to gain familiarity with the ideas and techniques introduced
in the text.

We should be aware that the physics of ultra-relativistic heavy-ion collisions
is a very broad, interdisciplinary field of physics. It is impossible to cover its all
important and interesting problems in one book. Therefore, I have included many
references to the original papers. They will guide the reader in further studies. I
apologize for any possible omissions of the important papers in the lists of references.

This book stems from my lectures given at the Institute of Nuclear Physics
in Krakéw, the Jan Kochanowski University in Kielce, and the Warsaw Univer-
sity of Technology. I would like to thank all my collaborators, colleagues, and
students for helpful comments, remarks, and questions. I am grateful to Piotr
Bozek, Wojtek Broniowski, Adam Bzdak, Mikolaj Chojnacki, Marek Gazdzicki,
Krzysztof Golec-Biernat, Adam Kisiel, Staszek Mréwczyniski, Radostaw Ryblewski,
and Giorgio Torrieri for critical comments concerning the manuscript. I thank Piotr
Bozek for supplying me with figures showing the results of his 3+1 hydrodynamic
calculations presented in Sec. 22.2.1. I also thank Mikotaj Chojnacki for his great
help in preparation of my own figures.

During the work on this book, I have gained a lot from the inspiring atmosphere
in the Cracow theoretical high-energy group created by Andrzej Bialas, Wiestaw
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Czyz, and Jan Kwiecifiski. I hope that this book will serve as a depository of many
creative ideas initialized in Cracow. I also thank Marek Pajek and Jan Pluta for
their constant support and sharing enthusiasm about the idea of writing a book
about relativistic heavy-ion collisions. Last but not least I thank my family for
their constant support, encouragement, and patience.

I would be grateful for any comments concerning the text and ideas presented
in this book. I would appreciate if they are sent to me directly to the electronic
address Wojciech.Florkowski@ifj.edu.pl.

Wojciech Florkowski
Krakéw-Pcim—Kielce, 2007-2009
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Chapter 1

Introduction

1.1 High-energy nuclear collisions

Physics of the ultra-relativistic heavy-ion collisions is an interdisciplinary field which
connects the high-energy physics of elementary particles with the nuclear physics.
The name “heavy-ions” is used for heavy atomic nuclei, whereas the term “ultra-
relativistic energy” denotes the energy regime where the kinetic energy exceeds
significantly the rest energy. Typically, the high-energy particle physics deals with
single particles (leptons, quarks, hadrons), and the interactions are derived from first
principles. On the other hand, the nuclear physics deals with extended, complicated
objects (nuclei), and the interactions are described by effective models. In the new
field of the ultra-relativistic heavy-ion collisions one tries to analyze the properties
of hot and dense nuclear/hadronic matter in terms of elementary interactions. Of
the special importance are experimental searches for theoretically predicted new
phases of hadronic matter, identification of the phase transitions between those
phases, and a possible reconstruction of the phase diagram of strongly interacting
matter in the broad range of the thermodynamic parameters such as temperature
or baryon chemical potential.

In the last thirty years the nuclear physics has changed its character in a very
significant way. In the 1970s and at the beginning of 1980s several accelerators
used by the particle physics community were modified to accelerate heavy ions.
For example, the Bevatron in Berkeley was coupled with the SuperHilac to form
the Bevalac [1]. The SuperHilac was a linear accelerator where the ions of heavy
elements were created and sent for further acceleration to the Bevatron. In this
way the relativistic energies of 1-2 GeV per nucleon were achieved. Similarly, the
Dubna Syncrophasotron was converted to accelerate heavy jons. On the other
hand, in the same time a number of accelerators used in the nuclear research were
developed, yielding relativistic beams of heavy ions in many places, for example, at
the Gesellschaft fiir Schwerionenforschung (GSI) in Darmstadt.

The first experiments with the ultra-relativistic heavy ions (with energies ex-
ceeding 10 GeV per nucleon in the projectile beam) took place at the Brookhaven
National Laboratory (BNL) and at the European Organization for Nuclear Re-
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Table 1.1 Summary of the RHIC runs in the
years 2000-2006: number of the run, date,
colliding systems, and energy.

Run  Year Species  1/snn [GeV]

01 “2000 Au+Au 130
02 20012 Au+tAu 200
p+p 200
03 2002-3 d+Au 200
p+p 200
04 2003-4 Au+Au 200
Au+Au 62
05 2004-5 Cu+Cu 200
Cu+Cu 62
Cu+Cu 22.5
p+p 200
06 2006 p+p 200
p+p 62

search (CERN) in 1986. The Alternating Gradient Synchrotron (AGS) at BNL
accelerated beams up to 28Si at 14 GeV per nucleon. At CERN, the Super Proton
Synchrotron (SPS) accelerated 260 at 60 and 200 GeV per nucleon in 1986, and %S
at 200 GeV per nucleon in 1987. In 1990 a long-term project on heavy-ion physics
was realized at CERN with several weeks of 32S beams. In the spring of 1992 the
experiments with 197Au beams at 11 GeV per nucleon were initiated at BNL. In
1995 the completely new experiments took place at CERN with 2®Pb beams at
158 GeV per nucleon. These were for the first time really ultra-relativistic “heavy”
ions providing large volumes and lifetimes of the reaction zone.

In 2000 the first data from the Relativistic Heavy Ion Collider (RHIC) at BNL
were collected. RHIC was designed to accelerate fully stripped Au ions to a collision
center-of-mass energy of 200 GeV per nucleon pair, i.e., for \/snn = 200 GeV (for
the history of the construction of RHIC see [2]). The design luminosity corresponds
to approximately 1400 Au+Au collisions per second. During the first run in 2000,
the maximum energy of 130 GeV per nucleon pair was achieved, with 10% of the
designed luminosity. In the years 2001-2004 the next three runs took place with
the maximum energy of 200 GeV per nucleon pair. One of those runs was devoted
to the study of the deuteron-gold collisions which were analyzed in order to get the
proper reference point for the more complicated gold on gold collisions. Altogether,
in the years 2000-2006 six runs took place with different colliding systems and at
different beam energies, see Table 1.1.

There are four experiments at RHIC. The two smaller experiments are BRAHMS
and PHOBOS, and the two larger experiments are PHENIX and STAR. The ex-
perimental aim of BRAHMS is particle identification over a broad rapidity range.
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Table 1.2 Quark Matter Conferences

Number Date Place Proceedings
1th Aug. 24-31, 1980 Bielefeld, Germany [3]
2nd May 10-14, 1982 Bielefeld, Germany [4]
3rd Sept. 26-30, 1983 Upton, USA - [5]
4th June 17-21, 1984 Helsinki, Finland - (6]
5th April 13-17, 1986 Pacific Grove, USA [7]
6th Aug. 24-28, 1987 Nordkirchen, Germany [8]
Tth Sept. 26-30, 1988 Lenox, USA [9]
8th May 7-11, 1990 Menton, France [10]
9th Nov. 11-15, 1991 Gatlinburg, USA [11]
10th June 20-24, 1993 Borlange, Sweden [12]
11th Jan. 9-13, 1995 Monterey, USA [13]
12th May 20-24, 1996 Heidelberg, Germany [14]
13th Dec. 1-5, 1997 Tsukuba, Japan [15]
14th May 10-15, 1999 Torino, Italy [16]
15th Jan. 15-20, 2001 Stony Brook, USA [17]
16th July 18-24, 2002 Nantes, France [18]
17th Jan. 11-17, 2004 Oakland, USA 19]
18th Aug. 4-9, 2005 Budapest, Hungary [20]
19th Nov. 14-20, 2006 Shanghai, China [21]
20th Feb. 4-10, 2008 Jaipur, India [22]
21th Mar. 30-Apr. 4, 2009 Knoxville, USA

2011 ) Annecy, France

22th

The PHOBOS experiment measures total charged particle multiplicity and particle
correlations. The PHENIX experiment is designed to measure electrons, muons,
hadrons and photons. The STAR experiment concentrates on measurements of
hadron production over a large solid angle.

The future of the field is connected with the construction of the Large Hadron
Collider (LHC) at CERN (Pb on Pb reactions at V8NN = 5.5 TeV). Nevertheless,
the performance of new experiments at lower energies is also very important, since
this allows us to study the energy dependence of many characteristics of the particle
production. Within the more recent project at the SPS, in the years 1999-2003,
the NA49 Collaboration recorded Pb+Pb collisions at 20, 30, 40 and 80 GeV per
nucleon. More information on the development of the experimental situation in the
last thirty years may be found in the series of the Quark Matter Proceedings whose
list is given in Table 1.2 1.

1t is not quite clear what the first conference in this series was. An alternative for the first posi-
tion listed in Table 1.2 is the First Workshop on Ultra-Relativistic Nuclear Collisions, organized
at the Lawrence Berkeley Laboratory in 1979, LBL report 8957.
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6 PHENOMENOLOGY OF ULTRA-RELATIVISTIC HEAVY-ION COLLISIONS

1.2 Theoretical methods

In the ultra-relativistic heavy-ion collisions very large numbers of particles are pro-
duced (we deal with so called large particle multzplzcztzes) TFor example, in the
central Au+Au collisions at RHIC, at the highest beam energy /snn = 200 GeV,
the total charged partlcle multlphclty is about O, §23 Hence, the number of
produced particles exceeds the ‘number of initial Tucleons by a factor of 10. In this
situation, different theoretical methods are used, which are suitable for description
of large macroscopic systems, e.g., thermodynamics, hydrodynamics, kinetic (trans-
port) theory, field theory at finite temperature and density, non-equilibrium ﬁeld
theory, Monte-Carlo simulations.

Many estimates of the effects in hlgh-energy nuclear collisions are done on the
basis of purely thermodynamzc or stat'tstzcal conSLderatlons However, the hadronic
systems produced in the collisions are not static. The need for the dynamical de-
scription involves rich applications ofFelativistic. hydrodynamics. Furthermore, since
the matter produced in the collisions-lives only for a short while, it is natural to ex-
Rect that its spacetime evolution proceeds far away from equilibrium. Consequently,
_there exists a growing interest in applying and developing transport theories which
are suitable for the description of non-equilibrium processes. In the similar spirit,
one tries to describe the heavy-ion reactions with the help of microscopic. Monte-

' Carlo_simulations Whlch usually represent an extrapolation of low energy models

of hadron—hadron c@vhsmls. Last but not least, the physics of the ultra-relativistic
heavy-ion collisions triggered fast development of the guantum theory of fields in and
out of equilibrium. Using the methods of field theory one can study the in-medium
propértlesyof partlcles Moreover, this approach allows also for the formulation of
the kinetic equations satisfied by the particle distribution functions.

1.3 Quantum chromodynamics

Generally speaking, during high-energy nuclear collisions a many-body system of
strongly interacting particles is produced. The fundamental theory of the strong
interactions is Quantum Chromodynamics (QCD), the theory of quarks and gluons
which are confined in hadrons, i.e., baryons and mesons.

From the historical perspective we may say that the development of QCD started
with the 1963 proposal of Gell-Mann [24] and Zweig suggesting that the structure
of hadrons could be explained by the existence of smaller particles inside hadrons
(at that time u,d and s quarks). In 1964 Greenberg [25] and in 1965 Han with
Nambu [26] proposed that quarks possessed an additional degree of freedom, that
was later called the color charge. Han and Nambu noted that quarks might inter-
act via exchanges of an octet of vector gauge bosons (later gluons). Feynman and
Bjorken argued that high-energy experiments should reveal the existence of partons,
i.e., particles that are parts of hadrons. Those suggestions were spectacularly veri-
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Fig. 1.1 Schematic view of the confinement mechanism. The separating q@ pair stretches
the color string until the increasing potential energy is sufficient to create another qg
pair. More pairs may be produced in this way, which leads to the formation of final state
hadrons.

fied in the deep inelastic scattering of electrons on protons, the experiments carried
out at the Stanford Linear Accelerator Center (SLAC) in 1969. The partons were
identified with quarks. The discovery of asymptotic freedom in the strong interac-
tions by Gross, Politzer and Wilczek [27-29] allowed for making precise predictions
of the results of many high-energy experiments in the framework of the perturba-
tive quantum field theory [30] — the asymptotic freedom is the property that the
interaction between particles becomes weaker at shorter distances.

Probably the most striking feature of QCD is the color confinement [31-33],
which is the other side of the asymptotic freedom. This is the phenomenon that
color charged particles (such as quarks and gluons) cannot be isolated as separate
objects. In other words, quarks and gluons cannot be directly observed. The
physical concept of confinement may be illustrated by a string which is spanned
between the quarks when we try to separate them, see Fig. 1.1. If the quarks are
pulled apart too far, large energy is deposited in the string which breaks into smaller
pieces. As a result the quarks form new hadrons produced from the pieces of the
initial string. :

Such a qualitative picture of confinement is supported strongly by the numerical
calculations. On the other hand, at the moment there is no analytic approach or
approximation that describes the behavior of QCD at large distances. Lacking this,
we often feel that we do not understand fully the mechanism of confinement and _
its proof is missing. This situation is reflected by the fact that the Clay Mathemat-
ics Institute of Cambridge includes the confinement problem as one of the seven
Millennium Problems and offers a prize of one million dollars for the proof [34].
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In some sense, the nuclear force between baryons and mesons can be viewed
as a residual force acting between quarks and gluons, in the analogous way as the
chemical (van der Waals) force is the residual electromagnetic interaction. Since
QCD is a complicated non-linear theory, the complete description of the relativistic
heavy-ion collision based exclusively on first principles is impossible in practice.
Almost in all cases we have to use models, although QCD may be successfully
applied to describe subprocesses of complicated collisions or to deliver an input for
modeling. In particular, the lattice simulations of QCD give us information about
the equation of state of strongly interacting hot matter, which may be then used as
an input for the hydrodynamical codes. In addition, theoretical calculations based
on QCD inspire new measurements.

More information about QCD (although still very much restricted) will be given
in Chap. 5. We refer also to the general textbooks discussing QCD, for example,
Refs. [35,36]. '

1.4 Quark-gluon plasma

The main challenge of the ultra-relativistic heavy-ion collisions is the observation of
the two phase transitions predicted by QCD, i.e., the deconfinement.and chiral phase
transitions. As we have mentioned above, at Earth conditions (i-e., at low energy
Héhsities) quarks and gluons are confined in hadrons. However, with increasing

A phase diagram, year ~ 1980

quark—gluon plasma

hadronic matter

Fig. 1.2 The first phase diagram of strongly interacting matter was introduced in the
paper by Cabibbo and Parisi in 1975 [37]. It looked similar to the plot shown here. The
line distinguishes two regions in the two-dimensional space of temperature, T', and baryon
chemical potential, pp. For smaller values of T and/or pup (the points below the curve)
the matter is made out of hadrons, whereas at sufficiently high values of T or pp (the
points above the curve) the matter is made up of deconfined quarks and gluons.
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temperature (heating) and/or increasing baryon density (compressmn) a phase
transition may occur to the state where the ordinary hadrons do not exist anymore,
and where quarks and gluons become the correct degrees of freedom. In 1975,
soon after the discovery of asymptotic freedom in the strong interactions, Collins
and Perry argued that “superdense matter (found in neutron-star cores, exploding
black holes, and the edrly big-bang universe) consists of quarks rather than of
hadrons” [38]. In the same year, Cabibbo and Parisi identified the limiting Hagedorn
temperature with the temperature of the phase transition from hadronic to quark
matter [37]. They also sketched the first phase diagram of strongly interacting
matter, see Figs. 1.2 and 1.3. The collective phenomena in gauge theories were
studied then by Kislinger and Morley [39,40]. Freedman and McLerran computed
the three—loop contributions to the thermodynamic potential [41-43]. Calculations
at finite temperature were performed by Shuryak [44, 45), who in 1978 introduced
the name quark-gluon plasma (QGP), and by Kapusta [46]. The first quantitative
conmderatxons concerning the possibility of the formation of hot quark matter in
relativistic heavy-ion collision were given by Chin [47] 2

The present experimental evidence indicates that in the ultra-relativistic heavy-
ion collisions an extended and very dense system of strongly interacting matter is
indeed formed. It differs in many aspects from the systems formed in elementary
hadron-hadron reactions. On Feb.: 16 200”0ERN announced officially [48] that ‘a
compelling ev1dence now exists for the formation of a state of matter at gnepgy
densxtles abouf 20 times larger than i in the center of § o ¢ nivielei and temperatures

S igher than in the center of th nﬁ . This announcement
followed the analysm of many experimental data collectex during 15 years of heavy-
ion experiments at the SPS.

The first RHIC data confirmed the overall picture that emerged from the stud-
ies at lower energies.. However, several new features of the collision process were
observed, e. g., higher particle multiplicities, increased production of antiparticles,
strong collective phenomena, and lower baryon number density in the central ra-
pidity region. The data collected in the next runs, especially in the deuteron-gold
collisions which were used as a reference measurement, brought the evidence for
strong quenching of very energetic particles traversing the medium created in the
central Au+Au collisions. The streams of such particles, called jets, appear in el-
ementary collisions where they form two, flying back-to-back, groups of hadrons.
The RHIC data indicate that such back-to-back correlations between very energetic
hadrons are lost in central Au+Au collisions. This effect may be understood easily
by the assumption that one of the jets is absorbed by the medium because it has a
longer distance to traverse in the medium. ‘

The notorious question is asked if the quark-gluon plasma has been indeed dis-

2Probably, for the first time the idea of using the ultra—relatlvxstlc heavy-ion collisions to produce
and study new forms of matter was introduced during the Workshop on BeV Collisions of Heavy
Ions: How and Why, which was held in Bear Mountaln New York, Nov. 29 - Dec. 1, 1974,
BNL-AUI report, 1975.
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phase diagram, year ~ 1990

T
~~~~ ~«._ quark—gluon plasma
\~~
~,
\\\
\\

\\

hadronic matter Y,

Ay

‘\
1
1
1
1
1

1 >
HB
A
phase diagram, year ~ 2000
T

.....

quark—gluon plasma

hadronic matter
color
superconductor

HB

Fig. 1.3 Time evolution of our views on the phase diagram of strongly interacting matter.
Around 1990 most physicists believed that there was a crossover between the hadronic
matter and the quark-gluon plasma, i.e., a sudden change in the energy density, but not
real phase transition (dashed line in the upper part). By the year 2000 this opinion had
changed. At present, we expect that there is a line of the first order phase transition
ending in a critical point (solid thick Hne in the lower part) In addition, at very high
baryon density (large baryon chemical potentxal) there is a color superconductivity region,
for a review see [49]. The crossover transition takes place at low baryon density and high
temperature (dashed line in the lower part).

covered in the relativistic heavy-ion collisions. If we have in mind the asymptotic
state, where due to the asymptotic freedom the plasma is treated as an ideal gas
of quarks and gluons, then the question seems to be quite difficult or even impos-
sible to answer. Although different “plasma signatures” have been proposed, we
have no definite proof that such an asymptotic state has been reached. On the
other hand, the phenomena such as the absorption of jets or simple estimates of
the energy density accessible at the center of relativistic heavy-ion collisions indi-
cate that the produced matter cannot consist of hadrons — the hadronic sizes are
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simply too big to allow for the treatment of hadrons in the initial stages of the
collisions as well isolated degrees of freedom. Consequently, the matter produced in
the ultra-relativistic heavy-ion collision is definitely a system of interacting quarks
and gluons. It is much denser than that produced in more elementary hadronic
or proton-nucleus collisions. Moreover, the system created in heavy-ion collisions
exhibits high level of thermalization and shows strong collective behavior. Accept-
ing these facts, it is natural to admit that the produced matter is an interacting
quark-gluon plasma [50-53]. This point of view has been adopted in this book. The
remaining problem is, however, to establish more precisely the physical properties
of the plasma. In particular, it is important to conclude how strongly interacting
system it is [54-56].

Clearly, further systematic studies are necessary now to extract more detailed
information about the dense medium found in the heavy-ion experiments. Certainly,
only now this field of physics has come into its mature age. Lead on lead collisions
at the LHC, offering the initial energy density 50 to 100 times larger than that of
normal nuclear matter, will be the next source of very intriguing data.

1.5 Chiral symmetry

There exist. six.different types (flavors) of quarks: up, down, strange, charmed,
bottom and top. The bottom and the top quark are sometimes called the beauty
and the true one. Let us now restrict our considerations to the subsector of QCD
describing only up and down quarks. At normal Earth conditions, the most common
hadrons, i.e., protons, neutrons and pions are made of these two flavors. The masses
of up and down quarks are very small so they are usually ignored in most of the
practical calculations, see Table 1.3.

In the limit of vanishing masses the left- and right-handed quarks become de-
coupled from each other and QCD becomes invariant under their interchange. One
of the consequences of this fact is that there are left- and right-handed quark cur-
rents which are separately conserved, instead of only the vector current which is
conserved in the massive case. Symmetry between the left- and right-handed quarks
implies also that each state of the theory should have a degenerate partner of the
opposite parity. On the other hand, we know that hadrons have well defined parity,
and no such parity partners are observed! The paradox is resolved by the phe-
nomenon of the spontaneous breakdown of chiral symmetry: the,\chi'ral symmetry of
the interaction is broken by the true ground state of the theory, see Fig. 1.4.

This mechanism was recognized first by Nambu, already in the pre-QCD times
[57-59]. There are many examples of such situations in other fields of physics. For
instance, the exact translational symmetry is broken by the ground states of solids
which are periodic crystals. According to the famous Goldstone theorem [60,61],
spontaneous breaking of any continuous symmetry is connected with the existence
of soft modes.
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In QCD such soft modes correspond to pseudoscalar pions. Their existence
solves the paradox — infinitely soft pseudoscalar modes can be added to any state,
changing the parity without any change in energy. In reality pions have a small
mass and are sometimes called pseudo-Goldstone bosons. This is due to the fact
that the masses of up and down quarks are not exactly zero and the chiral symmetry
is approximate.

In a very hot and dense hadronic medium, ordinary hadrons lose their identities
and the quark-gluon plasma is produced. In this case the ground state of the strong
interactions is significantly modified and the chiral symmetry is expected to be
restored; in the natural way the left- and right-handed (prééti'éélly massleés) quark
excitations in the plasma are the chiral partners to each other.

Observation of the signals of the chiral phase transition is an exciting perspective
of the experiments with heavy ions. It is possible that the two phase transitions,
i.e., deconfinement and chiral restoration, do not happen simultaneously. One can
imagine that with the increasing temperature we first have deconfinement (but still
the quarks have non-zero effective masses) and later the chiral phase transition to
massless quarks. In 1983 the lattice simulations of both SU(2) and SU(3) gauge
theories indicated, however, that the two phase transitions took place at almost
the same temperature [63]. The coincidence of the two temperatures has been
confirmed by more recent calculations, for example, see [64]. The issue whether this

Fig. 1.4 The mechanism of the spontaneous symmetry breaking may be illustrated by a
symmetric, temperature dependent potential Ueg(c). For T > T. the potential has one
(global) minimum and the ground state of the field & corresponds to the case o = 0. If the
temperature becomes smaller than T¢, the potential develops two different local minima.
Although the potential is still a symmetric function of o, the ground state of the field is
randomly changed to either +0o or —o9 (to +0o in this plot).
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coincidence is exact or approximate is under discussion now, but in any case the
two temperatures seem to be very close to each other. This is why most physicists
identify the two phase transitions. A theoretical possibility still exists, however, that
the two phase transitions differ significantly at a finite baryon chemical potential.

1.6 Hot and dense nuclear matter

The study of high-energy nuclear reactions gives us important information about
properties of hot and dense hadronic matter — by this we mean here the matter
present at the late stages of the collisions where hadrons may be regarded as the
correct degrees of freedom. Heavy-ion collisions are the only way to compress and
heat up nuclear matter in laboratory conditions. Information extracted from data
can be useful for the construction of adequate models of neutron stars and super-
nova, explosions. Already at energies of the order of a few GeV per nucleon one
encounters many interesting and well established phenomena like, e.g., collective
flows or subthreshold production of particles. Central collisions of symmetric heavy
ions at 1 GeV per nucleon (so called relativistic regime) are likely to yield about
3 times normal nuclear matter density. The particles inside such a system do not
propagate completely freely: their Compton wavelength may be comparable with
their mean free path. In this situation, we expect that some of the particle prop-
erties (e.g., hadron masses, widths or coupling constants) can be changed. These
in-medium modifications can lead to the experimentally observed phenomena. For
example, the change of the p meson mass and/or width in dense matter can influence
the measured dilepton spectrum. Nowadays, one attempts to connect in-medium
modifications of hadron properties with the partial restoration of chiral symmetry.

1.7 Units and notation

In this book we use the natural system of units where the velocity of light in vacuum,
¢, the Planck constant h divided by 2w, A, and the Boltzmann constant, kg, are
all equal to unity, c = A = kg = 1. The exception are the sections devoted to
the kinetic theory where the convention h = 1 is sometimes more useful. With the
choice ¢ = A = kp = 1 it becomes unnecessary to write ¢, i, and kg in the equations,
thus, we save space and trouble. The dimensional analysis may be always used to
unambiguously reinsert those constants into various expressions. It is suggested to
the readers who are not familiar with the natural system of units that they first
work out Ex. 7.1. For electromagnetic quantities we have adopted the Heaviside-
Lorentz system of units where €q is set equal to unity and the factors 47 are absent
in the Maxwell equations.

The field of the relativistic heavy-ion collisions includes many subfields with
commonly accepted notation. In the book discussing phenomena belonging to such
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different subfields it becomes difficult to use simple and unequivocal notation. We
have tried to avoid the situations where the same symbols are used for different
physical quantities but sometimes such situations are inevitable. We hope that it
does not lead to much confusion, since the proper meaning follows usually from
the physical context. The most common symbols used in the book are presented
in Tables 1.4-1.7. We note that spatial three-vectors and color two-vectors (in the
space of color isotopic charge and color hypercharge) are indicated by letters in
boldface.

In the text we often refer to Lorentz transformations. By this we mean
the Lorentz boosts, mostly in the direction of the beam axis, or the proper or-
thochronous Lorentz transformations. Again the correct meaning follows from the
context.
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Table 1.4 Symbols of the physical quantities used in the book (part 1).

spacetime variables

Guv = dla'g(lv -1,-1, _1)
zt = (20, 2%, 22,2%) = (t, 2,9, 2)
r=/x2 + y2
¢ = arctan(y/z)
0 = arctan(r/z)
T=V12 =22

n =l

t—z

metric tensor
spacetime coordinates
distance from the collision axis
azimuthal angle
polar angle
(longitudinal) proper time
spacetime rapidity

kinematical variables
describing single particles

m (mN,mw)
p}" = (PO,PI,P2,P3) = (E»Pm,Pyypz,)
P°=p=E
Ep = /m2 +p?
p®=-p3=p. =p|
pL = /P2 +DZ
¢p = arctan(py /pz)

my = 4/m? +p?
= 11, Etoy
y= 2 n E—p"
_ 11, Ipl+p
n=3zln Ip[—p)

mass (nucleon mass, pion mass)
four-momentum
energy
mass-shell energy
longitudinal momentum of a particle

transverse momentum of a particle
momentum azimuthal angle
transverse mass
rapidity
pseudorapidity

variables characterizing nucleus-nucleus,
nucleon-nucleus, and nucleon-nucleon collisions

A, B

PA
Npart, Nspec
n,w
b, b
c
s = (p1+p2)?
t=(p1 —p})>
u = (p1 —p})?
f(s:1)

[

Otot, Oin, Oel
Oincl
&(s,b)
t(b)7 Ta (b)a TaB (b)
Rap
P1,P2

atomic mass numbers
(also labels characterizing nuclei)
‘Woods-Saxon function
number of participants, number of spectators
number of binary collisions, number of wounded nucleons
impact vector, impact parameter
centrality

Mandelstam variables

scattering amplitude
scattering angle

nucleon-nucleon total, inelastic, elastic cross section

inclusive cross section

phase shift
thickness functions
nuclear modification factor

invariant one- and two-particle inclusive distributions
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Table 1.5 Symbols of the physical quantities used in the book (part 2).

kinetic-theory variables

. f(=z,p)
f = (2nh)3f = h3f

€

f(z,p) =1+ h3¢f(z,p)
[f(x,p)]

Wa,ﬂ(z,p)
S(z,p)

_ avd®
dFa = Ganys,
dTiny = dV dt T2

N# = (n% n) .
i* =(p,J)

T
Sk, AT
AT
Ao
b, E) UM

C, Cu
W(p,p1lp’,p1), Wrt, Wijsj

phase-space distribution function

parameter of the equilibrium distribution functions

€ = +1 for bosons and € = —1 for fermions
statistical correction factors in collision terms
functional used to define entropy current

Wigner function
emission (source) function

classical phase-space element

Lorentz invariant phase-space element

particle number current
electric current

energy-momentum tensor
entropy current, statistical weight
differential transition rate
differential cross section
flux, invariant flux, Mgller velocity

collision terms
transition rates

QED and QCD variables

Ar, AL
Fhv | pRY
£
£ = (£3,£8)

€5, an
Y

g, as = g2/(4m)
B

four-potential, color four-potential
field tensor, color field tensor
longitudinal electric field F'3°
“neutral” components of
longitudinal chromoelectric field (Fgo, F83°)
color charges of quarks (i = 1,2, 3)
and “charged” gluons (i,j = 1,2,3;1 # j)
Gell-Mann matrices
strong coupling constants
bag constant
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Table 1.6 Symbols of the physical quantities used in the book (part 3).

thermodynamic variables

N multiplicity, baryon number
n multiplicity, particle density, baryon number density
T (T;,T¢) temperature (initial temperature, final temperature)
u (uB) chemical potential (baryon chemical potential)
P, V pressure, volume
E, e=E/V energy, energy density
W =E+ PV enthalpy
w=W/N enthalpy per baryon
w=W/V enthalpy density
S entropy
s=S/N entropy per baryon
o=S/V volume entropy density
cs sound velocity
A=c2 sound velocity squared
Ty Hagedorn limiting temperature
p(m) hadron mass spectrum
gr degrees of freedom of the pion gas
Jagp degrees of freedom of the weakly-interacting quark-gluon plasma
thermodynamic variables characterizing relativistic gas of
nel, Pel, --- classical massive particles (cl),
Ny, Pp, .- massless bosons (b), and
ng, P, ...  massless fermions (f)

hydrodynamic variables

fluid four-velocity
fluid three-velocity
gamma Lorentz factor

ut = (uo)u) = 7(17")
v = (vg, vy, Vz),
7= (- %)

vy = 4/vZ +vZ

_ 1 1+v
d, = %ln—#%ru_
= & S i
¥ =3ln35

transverse flow

transverse fluid rapidity
fluid rapidity (note that this definition does not require
that v has only the longitudinal component)

Ed; =utd, total time derivative
Cs sound velocity
®(T) potential used in the Baym formalism
®r(t, 2) potential used in the Landau formalism
x(T,9) Khalatnikov potential
Y =In(T/T3) logarithm of temperature
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Table 1.7 Symbols of the physical quantities used in the book (part 4).

terminology for interferometry

O(pl y p2)
p(P1,P2)

k=1 (p1+p2)
qQ=p1-DP2, 4=aq1—q

% = out, side, long
i
G;

R;

two-particle correlation function
density matrix

average three-momentum
relative three- and four-momentum
velocity of a pair
relative three-momentum
and relative distance in the pair rest frame

ith component of q in the out-side-long frame
relative four-momentum in the out-side-long frame
for the case where only g; is different from zero
HBT radii

special functions

6(z)
6(x)
In(z)
Kn(z)
['(z)
()
Lin (z)
B;,

Heaviside function (unit step function)
Dirac delta function
modified Bessel functions of the first kind
modified Bessel functions of the second kind

Euler gamma function

Riemann zeta function

polylogarithm function
Bernoulli numbers
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Chapter 2

Basic Dictionary

In this Chapter we introduce the basic terminology used to describe the geometry
and kinematics of heavy-ion collisions. We define commonly used concepts such
as: participants, spectators, transverse mass, rapidity, pseudorapidity, wounded
nucleons. We present also different methods of the determination of the reaction
plane and discuss the phenomena of collective flow, stopping, and transparency.

2.1 Participants, spectators, and impact parameter

In the ultra-relativistic heavy-ion collisions, the energy per nucleon in the center-
of-mass frame is much larger than the nucleon mass. At such very high energies,
simple geometric concepi:s are often used. For example, one separates so called
participants from spectators, see Fig. 2.1. If we assume that all nucleons propagate
along parallel, straight line trajectories, then the nucleons which do not meet any
other nucleons on their way are called spectators (there can be target and projectile
spectators in a collision). Other nucleons which interact with each other are called
participants. The participants which suffered at least one inelastic collision are
called the wounded nucleons. Since the inelastic processes dominate at very high
energies, very often the terms “participants” and “wounded nucleons” are regarded
as synonyms. The precise definition of the wounded nucleons, in a reference to
the Glauber model of multiple scattering processes, will be given later in Sec. 3.5.
We note that at the considered very high beam energies the binding energy of
the nucleons in nuclei as well as the energies of the excited nuclear states may be
ignored, hence, only the spatial distribution of the nucleons in the nuclei and the
value of the nucleon-nucleon cross section at a given beam energy have relevance
for the outcome of the collision.

A two-dimensional vector connecting centers of the colliding nuclei in the plane
transverse to the nucleon trajectories is called the impact vector, and its length is
the impact parameter. In particle as well as in nuclear physics it is practical to
introduce a coordinate system, where the spatial z-axis is parallel to the beam of
the accelerator, and where the impact vector b points in z-direction. The two axes,

25
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z and z, span the reaction plane of a given collision.

The very important class of central collisions corresponds to the zero impact
parameter !. The measurements averaged over different impact parameters are
called the minimum-bias data. The value of the impact parameter determines the
number of the participants, Npar, as well as the number of the spectators, Ngpec.
An estimate of Ny, allows us to compare proton-nucleus (pA) and nucleus-nucleus
(AA) results to pp data by means of a simple rescaling (there are obviously two
participating nucleons in a pp collision). This facilitates also comparisons of different
heavy-ion collisions. Experimentally, the value of Nspec may be inferred from the
measurement of the energy deposited in the zero-degree calorimeter (ZDC). At
RHIC, each experiment is equipped with a pair of such calorimeters which are
placed close to the beam line but far away from the center of the interaction region
(at the distance of approximately 18 m). Being placed behind the dipole magnets
which sweep away charged particles, ZDC’s measure the energy of the spectator
neutrons only. Coincidences between the ZDC counters serve also as the trigger for
the collision events.

spectators

participants

participants

spectators

Fig. 2.1 Participants (darker regions) and spectators (lighter regions) in a nuclear collision.
The impact vector is denoted by b. The two colliding nuclei are Lorentz contracted. For
the relativistic energy \/snn = 5 GeV the Lorentz gamma factor is 2.7 (this corresponds
roughly to the case shown in the figure). For the LHC energy v/SNN = 5.5 TeV the gamma,
factor will reach 2700 (!). At such large energies, the velocities of the nuclei are practically
equal to the speed of light.

11n practice one considers a group of events which are characterized by the smallest values of the
impact parameter. The concept of centrality is discussed more thoroughly in Sec. 2.3.
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2.2 Kinematical variables

2.2.1 Transverse mass

The component of a three-vector A parallel to z-axis is usually denoted by A, and
the transverse component is A; = A — Aj. The transverse mass of a particle is

defined as
mJ_ = \/mQ + p?La (2'1)

where m and p are the particle’s mass and three-momentum, respectively 2, Clearly,
the transverse mass is invariant under Lorentz boosts along the beam axis. The
measured m | -distribution of the produced particles is typically of the exponential
form (for not too large transverse momenta, py < 1-2 GeV)

N

m Aexp (—mJ_//\) (2.2)

The two parameters A and A are obtained from the fits to the expenmental data
A typical value of} ); for pions measured at the SPS and RHIC is about. 200 MeV
Similarity of the distribution (2.2) to the Boltzmann thermal factor is the reason
Why”)& is very often described as an effectlve temperature of the spectrum It is also
called, more appropriately, the inverse slope pammete'r'

The form of Eq. (2.2) reflects the experimental fact that most of the produced
particles have small transverse momenta: for A = 200 MeV the average transverse
momentum is 400 MeV and about ! 70% of the produced pions have transverse mo-
menta smaller than’ 500 MeV. An mtrlgumg similarity of the experimental spectra
to the Boltzmann distribution was first realized by Hagedorn. We discuss his ideas
in more detail in Sec. 6.2.

2.2.2 Rapidity and pseudorapidily

|

Since we deal with relativistic energies, it is useful to use the-rapidity instead of the

standard velocity. It is defined by the equation f ﬂ ELC I A
o = arctanh { — ) =+arctanh{v ). o0 (2.3
O TN E- E=-p) (E ) refanh (1) c (23)

“Here Eis the energy of a particle, E = \/m? + p?, and v; = p||/E is the longitudinal
component of the velocity. Rapidity is additive under Lorentz boosts along the

2The “transverse” quantities are sometimes denoted by the subscript T, e.g., my or pr. The
“longitudinal” quantities are then denoted by the subscript L, e.g., pr.-
3The m | -dependent inverse slope parameter X is obtained from the measured spectrum with the

help of the formula
-1
A= _d_1n< dN )] .
de_ mJ_dm_L

The observed weak dependence of A on m for p; < 1-2 GeV speaks for usefulness of the formula
(2.2).
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z-axis (checking of this and other properties of the rapidity variable is left as Ex. 7.6).
Using the rapidity and the transverse mass, we can calculate the energy and the
longitudinal momentum of a particle from the equations

E =p° =m, coshy (2.4)
and

Dy =n sinhy. (2.5)
In the similar way one defines the pseudorapidity variable 7, namely
(Ip|+py) ( 0) 0
n= 1 =In{cot- | =—In{tan= |}, (2.6)
(Ip[ = py) 2 2
where 6 is the scattering angle. In analogy to Egs. (2.4) and (2.5) we have
: [pl =p, coshny (2.7)
and

|| = p1 sinh7n. (2.8)

After simple manipulations we also find

§}n9 = (2.9)

In the limit of small hadron masses, m — 0, the rapidity and the pseudorapid-
ity become equal. For finite masses the relations between the rapidity and the
pseudorapidity are more complicated

1 \/p% cosh® n +m2 + p sinh 7

coshn”

y=:ln , (2.10)
\/P%.cosh®n 4+ m2 — p, sinh 7
2 12 2 ~
1 m4 cosh®y —m?2 + m sinh y
n=3h Y (2.11)

\/micosh2 y —m2 —m sinh y

Equations (2.10) or (2.11) can be used to find a connection between the rapidity
distribution of particles and the pseudorapidity distribution

A dN__p| _dN. (2.12)
dnd2p, m?2 cosh?y dyd?py E dyd’py '

In the center-of-mass frame, the region of the phase-space where y ~ n ~ 0is
called the central rapidity region or the midrapidity region. On the other hand, the
‘regions corresponding to the initial rapidities of the projectile and target (y =~ yp,
y = yr) are called the projectile and target fragmentation regions, respectively.
Particle production in the central region is of special interest, since the particles
with zero rapidity are either the new particles created during the collision process or
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they are particles already present in the beams but undergoing several rescattering
processes which substantially change their initial purely longitudinal momenta. In
the central region, the relation between the pseudorapidity distribution and the
rapidity distribution, Eq. (2.12), involves only the simple factor

dN pL dN

- = = T . 2.13
dnd?p, p=0 ML dy d3p, y=0 ( )

The factor p, /m, is nothing else but the transverse velocity of a particle. It is
always smaller than one and makes the pseudorapidity distribution smaller than the
corresponding rapidity distribution (at y ~ 0). This effect is very often responsible
for flattening of the pseudorapidity distributions — the experimental Gaussian in
y, after multiplication by p) /m , becomes a flat pseudorapidity distribution [1-3].

2.2.3 Light-cone variable =

For inclusive experiments* a +b — ¢+ X we define the light-cone variable z as

Bt il 2.14
X = mp—ﬁ. ( . )
We find easily the following relation between z and y
mC
z=—2exp(y—y7), , (2.15)
or conversely
m3
—_ a
y=y*+Inz—-1In o (2.16)

Equation (2.15) shows that x is invariant under Lorentz boosts along the beam axis.
One may check, for the explicit calculation see for example [5], that for z > 0
and high center-of-mass energies, the light-cone variable coincides with the-Fegfinian

#caling variable zp

We note that pjj and p,, in the definition (217) are measured in the center-of-mass

frame. R

2.2.4 Ezperimental rapidity and transverse-momentum distribu-
tions

In this Section we give first examples of the data describing hadron production in
ultra-relativistic heavy-ion collisions. The upper part of Fig. 2.2 shows the rapidity -

4In the inclusive experiments of the type discussed here X is “anything”, i.e., an arbitrary
number of particles produced in addition to the particle c. The concept of exclusive and inclusive
experiments was introduced by Feynman in [4].
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Fig. 2.2 The measurement of the BRAHMS Collaboration at BNL (Au+Au collisions at
/3NN = 200 GeV, the most central events). Rapidity distributions (a) and average trans-
verse momenta (b) of charged pions, charged kaons, protons and antiprotons. Reprinted
figure with permission from [6]. Copyright (2009) by the American Physical Society.

distribution of pions, kaons, protons, and antiprotons measured by the BRAHMS
Collaboration at BNL in the most central Au+Au collisions at /snx = 200 GeV [6].
The lower part of Fig. 2.2 shows the corresponding average transverse momenta of
the hadrons. One of the goals of the BRAHMS experiment was to study a broad
rapidity range, not covered by other experiments 5. The rapidity distributions
measured by BRAHMS are well described by rather broad Gaussians centered at
y = 0. One can see that the numbers of positive and negative pions are almost
equal in the whole range of the rapldlty On the other hand, the numbers of positive
kaons and protons are significantly larger than the numbers of negative kaons and
antiprotons, respectlvely These differences grow with the rapidity of hadrons The
average transverse momenta of hadrons at y= 0 are: 450 MeV for pions, 700 MeV
for kaons, and 1 GeV for protons. For y > 1 the average momenta slowly decrease.

We may conclude that the results delivered by BRAHMS show small variations of
the physical quantities within one unit of rapidity around y = 0 .which may be
interpreted as the onset of the boost-invariance. in this reglon, “see Sec. 2.7. For
v> 1, the physical observables clearly change with respect to their values.at'y = 0.

“In Fig. 2.3 we show the transverse-mass spectra of pions and kaons measured
at midrapidity in the central Pb+Pb collisions at the energy Eib = 40 A GeV
(triangles), 80 A GeV (squares), and 158 A GeV (circles). This measurement was

5Large values of pseudorapidity are also available for PHOBOS, however without possibility of
particle identification.
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Fig. 2.3 The measurements done by the NA49 Collaboration at CERN. The transverse-
mass spectra of 77, K*, and K~ at midrapidity (|y| < 0.1 for kaons and 0 < y < 0.2 for
pions) in the central Pb+Pb collisions at the energy Ei.p, = 40 A GeV (triangles), 80 A
GeV (squares), and 158 A GeV (circles). The lines are the exponential fits to the spectra
in the interval 0.2 GeV < mz —m < 0.7 GeV. The values for 80 A GeV and 158 A GeV
are rescaled by the factors of 10 and 100, respectively. Reprinted figure with permission
from [7]. Copyright (2009) by the American Physical Society.

done by the NA49 Collaboration at CERN [7]. We observe a characteristic fall-off
of the spectra, which is very well described by the exponential formula (2.2). The
fitted values of the inverse slope of pions are: A = 169 MeV, 179 MeV, and 180 MeV
for the beam energies: 40 A GeV, 80 A GeV, and 158 A GeV, respectively. Figure
2.4 shows the rapidity distributions measured for the same colliding systems [7].
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40 A-GeV 80 A-GeV 160 A-GeV

1sof ™ 1

dn/dy

Fig. 2.4 The measurements done by the NA49 Collaboration at CERN. The rapidity
distributions of 7=, KT, and K~ in the central Pb+Pb collisions at the energy Ej.p = 40
A GeV, 80 A GeV, and 158 A GeV. The closed symbols indicate the measured points,
whereas the open points are reflection of the measured points with respect to the axis
y = 0. Reprinted figure with permission from [7]. Copyright (2009) by the American
Physical Society.

the rapidity dlstrlbutlon 1s determmed by the raplchty of the beam

y}’:x:m = iérccosh <L (2.18)

beam’

Equation (2.18) yields (with mN *denotmg the nucleon mass) ypp™ =~ 5.8 for
Ei, = 158 A GeV, and yi eamf A 4.4 for Epp = 40 A GeV. The correspond-
{iig™ range ™ in” the RHIC experiments at the maximum energy of 200 GeV is
2 x arccosh(100 GeV/my) = 2 x 5.36 = 10.7 6. S

“Although the center-of-mass energy available at RHIC is one order of magni-
tude larger than the maximum SPS energy, the rapidity distributions measured by
BRAHMS are rather smooth extrapolation of the results obtained at CERN. In
particular, the pion density at midrapidity increased only by 50% (from about 200
to about 300 for negative or positive pions). If the particles were produced uni-
formly in the firecylinder characterized by the transverse radius R, this would mean

SNote that RHIC is a collider and the value 10.7 corresponds to the measurement done in a
hypothetical reference frame connected with one of the nuclei.
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that the change of the energy by one order of magnitude implies the increase of R
by 20% only. We have to remember about such similarities in the global features
of hadron production at RHIC and the SPS before we look, in more detail, at the
differences.

We note that the rapidity distributions are obtained by integration of the mea-
sured transverse-mass spectra for each value of y

o ,

dN ) dN dN

oy _ = dm, ——1 2.1

dy / ¥pL dyd?p, / T G m L dmy (2.19)
m

Here an extrapolation based on the exponential function (2.2) or other reasonable
function is necessary to perform the integration over the whole range of m . This
procedure introduces a systematic error in the experimental estimates of the hadron
yields (also in the estimates of the mean multiplicities in the full phase space, which
are obtained by integration of the rapidity distributions).

The experimental data suggest a logarithmic dependence of the particle pseu-
dorapidity density, dNep,/dn, on the collision energy (for example, see [8,9])

[«

*| oo /o (220)

‘ i d77 n=0
Since the width of the rapidity distribution also increases with the energy as
In /SN 7, we expect a logarithmic-squared dependence of the total multiplicity

Nch 0.8 1n2 v/ SNN. (2.21)

2.3 Centrality

So far we have interpreted the most central collisions as those corresponding to the
smallest values of the impact parameter. In this Section we are going to introduce
the quantitative measure of the centrality and relate it directly to the impact param-
eter. In the experiments with ultra-relativistic heavy ions, the centrality c is defined
as the percentile of events with the largest multiplicity (as registered in detectors),
or with the largest number of participants (as determined from ZDC’s). We denote
this number generically as n. Results of different measurements are then presented
for various centrality classes. For example, in Fig. 2.5 the pseudorapidity distribu-
tions of hadrons measured by the PHOBOS Collaboration [10] were arranged into
6 different centrality classes. The centrality class 0-6% corresponds to the most
central collisions characterized by the smallest values of the impact parameter and
the largest values of the participating nucleons, Npart ~ 340. In such collisions also

"This is so because the beam rapidity yf’a‘ﬁ‘m at high energies is proportional to In , /SNN-
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Fig. 2.5 Pseudorapidity distributions of the charged particles measured by the PHOBOS
Collaboration in Au+Au collisions at /SNy = 130 GeV. The measurements were done
for six different centrality classes. Reprinted figure with permission from [10]. Copyright
(2009) by the American Physical Society.

the largest multiplicities of the produced hadrons are obtained. With the increasing
centrality, the number of the participants is reduced, and already for the centrality
class 34-45%, the mean number of the participants drops below 100. Note that the
large centrality corresponds to the large value of the impact parameter and, hence,
to a peripheral rather than to a central collision!

An interesting feature of the pseudorapidity distributions is the flat plateau with
a small dip in the central region around the value n ~ 0. This shape is different
from the shape of the rapidity distribution shown in Fig. 2.2. The reason for this
difference is the Jacobian appearing in Eq. (2.12), which makes the pseudorapidity
distribution at n = y = 0 always smaller than the rapidity distribution [1-3].

From the experimental point of view the centrality is a convenient criterion
allowing to divide the data. On the other hand, theoreticians need to assign an
impact parameter, b, to a given centrality. The impact parameter is in a sense more
basic, since it determines the initial geometry of the collision and appears across the
formalism. Theoretical calculations in heavy-ion physics input b in order to obtain
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predictions. Having done the calculation, the question arises as to which centrality
class the model results should be compared. For that purpose one typically applies
the Glauber model in order to compute the numbers of wounded nucleons or binary
collisions at a given b, which are subsequently related to multiplicities or number
of participants. Since these are measured in the experiment, one is able to identify
b with c.

In fact, as long as we are not interested in the effects of fluctuations such an
effort is not necessary, since under general assumptions which hold very well in
relativistic heavy-ion collisions, we have the relation

(2.22)

{n Is the total inelastic nucleus-nucleus cross section, and R is of the order
of the sum of the radii of the colliding nuclei (for identical nuclei“R = 2R and
¢~ b?/(4R?)). The centrality ¢(N) is the centrality of events with the multiplicity
higher than N, while b(XN) is the value of the impact parameter for which the
average multiplicity 72(b) is equal tq;;:vN

Note that the cenfrality cin Eq. (222) corresponds to the centrality class denoted
commonly as 0—c (for example 0-10%), and the value of the impact parameter b is
the mazimum value in this class. To find a “typical” value of b in the class one may
use Eq. (2.22) with ¢ divided by 2‘ For the centrality classes of the form ¢ = ¢; — ¢,
for example ¢ = 20-40%, one may find the typical value of b by using Eq. (2.22)
with c replaced by (c1 + c2)/2.

Equation (2.22) holds to a high accuracy for all but most peripheral collisions.
It is geometric in nature, and does not involve explicitly the variable n needed
to categorize the data (multiplicities, number of participants, number of binary
collisions, etc.). At first glance, this fact may seem a bit surprising.

o\ W\V‘Qc\ YU \3“,’*’(‘1‘ LAACLE

where gAB

2.3.1 Competition of archers...

To illustrate the geometric nature of Eq. (2.22) we shall consider now, as an example,
a competition of archers [11]. Each of them is shooting only once at a target of
radius‘,\Ri:.‘f; They are rather poor, such that they shoot randomly. They are paid
accordingly to their aim: more central, higher reward. We are not allowed to watch
the competition, hence do not know which spot on

on the target has been hit, but
later we review the reward records. Suppose a large number of archers scored (here
we take onlyi}lO in order to write down the results explicitly, see Flg 2.6), and are
ranked according to their prizes which are: 1008, 508, 508, 258, 258, 253, 10$, 108,
108, 10$. The archer that got the highest prize w(/100$1nth1s case) had to hit the
btill’s eye. Since he represents 10% of all archers, and they were shodting randomly,
we can immediately determine (neglecting the statistical error) the radius b of the
bull’s eye, since 10% is the ratio of the area of the bull’s eye to the total area
of the target: 10% = 7b?/ (mR?). Therefore:b' ="Ry/ 0%. Now, imagine another
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Fig. 2.6 Archers shoot randomly at the target. The black dots describe their results.
Knowing the rewards given to the archers we are able to conclude about the size of the
bull’s-eye of the target. Similarly, in the heavy-ion experiment we can make an estimate
of the size of the overlapping region of two nuclei, if the number of the produced particles
(a reward in this case) is a monotonic function of this size.

competition is held, with all rules the same but the prizes differently assigned to
the rings of the target. Suppose the ten archers got. 500$5 100$ 100$¢50$ 508, 508,
108, 10$, 108, 10$. Again, we can determine that the ,10% of the highest rewards
correspond to hlttlng the central spot and can_ deterrmne its radius b exactly as
tme Note that in the determination of b we are not using the actual values of the
rewards at all — the function used can be any monotonic function of the centrality.
The rewards are only used to- categorize-the data. Once this is done, we can identify
the ¢ “most central” archers and determine b according to Eq. (2.22), irrespectively
of the function used for qa,’ gorizi gi Our example can be translated into heavy-ion
collisions in the following way: archery competition — heavy-ion experiment, archer
that scored — event, rewards in competition I.— number of participants, rewards
in compet1t10n II — multiplicity of produced particles, percentlle of highest-scoring
archers — centrality, radii.of rings on the target — lmpact paramefers

The above example shows the essence of the argument There are, however, two
additional features which need to be considered. First, a collision at a particular
1mpact parameter b produces values of n which are statlstlcally distributed around
some mean value n(b) “with'a dlstrlbutlon width An(b) Nevertheless, Eq. (2.22),
formally valid at An(b) < @(b), is accurate even for realistically large An(b) [11],
such as obtained from statistical models of particle production. Second, there are
boundary effects neard «~. —,; — at lower values of b the inelastic cross section is the
cross section for colliding black disks, whereas at the boundary the target gradually
becomes transparent.

_me 8ot A N
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2.3.2 ... and heavy-ion experiment

We now proceed with a formal derivation. Let P(n) denote the probability of ob-
taining value n for the categorizing function (multiplicity of produced particles,
number of participants, number of binary collisions, etc.). For simplicity of the lan-
guage we call it the multiplicity, having in mind it could be any of these quantities.
The centrality c is defined as the cumulant of P(n), namely

¢(N) = Z P(n). (2.23)

Thus ¢(N) is the probability of obtalnmg an event with multiplicity larger or equal
to N. A particular value of multiplicity n may be collected from collisions with
various impact parameters b, thus we can write

(V) = Z / "I oP) (224)

where 27b'db’ is the area of the rmg between impact parameters b’ and b’ + dv/,
the quantity p(b’) is the probability of an event (inelastic collision) at impact pa-
rameter b, and P(n|b) is the conditional probability of producing multiplicity n
provided the impact parameter is b’. The function p(d') is unity for & below R,
and drops smoothly to zero at b’ around R, reflecting the washed-out shape of the
nuclear density functions at the edges. The interpretation of Eq. (2.24) is clear: the
probabilities for hitting the ring between b’ and b +db/, the probability for an event
to occur at b’, and the probability to produce multiplicity n (provided the event
occurred at b’) are multiplied, as requested by the classical nature of the problem.
Since we have

> P(ly) =1, (2.25)
n=1
and, by definition,
o0
21b'db p(b') = o2, (2.26)

0
we verify the proper normalization in Eq. (2.24), namely c(1) = 1. Furthermore, for
heavy nuclei we may use the continuity limit,

Z / dn—/ dnf(n — N). (2.27)

The function P(n|b’) is not known. Yet, by the statistical nature of the particle
production, and by experience of various models, we expect that for large values of
n it is narrowly peaked around an average value 7(b’). Thus we take the limit of
an infinitely-narrow distribution, P(n|b') = §(n — @a(d')). In this case

¢(N) = / dnf(n — N) /oo 271-{)4/?,/) (t')8(n —a (b))

= [ ) - ), (229)
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Since 7(b’) is a monotonically decreasing function of b, we have §(a(t') — N) =
O(b(N) — V'), where b(IN) is the solution of the equation 72(b) = N. Therefore

o) = [ Z o )000() - )

m

(N b/ db aAB(b(N
_ / e p(b'):——mo_g“(g ) (2.29)
mn mn

where g/A2(b(IV)) is the inelastic cross section accumulated from b’ < b(N). Equa-
tion (2.29) is a generalization of formula (2.22). In Ref. [12] it has been quoted
in the context of the Glauber model. We notice that although ¢ and b depend
implicitly on N, their relation does not explicitly involve V.

As mentioned above our discussion has been restricted here to the case where the
effects of fluctuations may be neglected. Recently, the effects of different definitions
of the centrality bins on correlation and fluctuation observables in heavy-ion collision
have been presented in Ref. [13]

2.4 Reaction plane

In this Section we present various experimental methods used to determine the
reaction plane. Its simple geometrical concept was introduced earlier in Sec. 2.1.

2.4.1 Sphericity method

At low and intermediate energies the traditional method used to determine the
reaction plane of a collision is based on the analysis of the Mnetlc—eneggytensor

&= Z WDl Py (2.30)
Here p?n) is the ith component of the three-momentum p(,) of the nth particle
registered in an event consisting of N particles (4,7 = 1,2,3) {14-16]. All the
measurements are done in the center-of-mass frame of the colliding nuclei. The
quantities wy, are weights. In the literature one finds different forms of wy,, e.g.,
W, = 1/p(ny and w, =1 /p(2 ) in [14] or wy = 1/(2my,) in [15,16]. Different choices
of the weights serve to optlmlze the determination of the reaction plane

The tensor §* s symmetrlc by construction and has six 1ndependent variables.
They may be identified with three eigenvalues and three Euler angles that are

obtained from the diagonalization procedure. These parameters define the shape .

and orientation of an ellipsoid. The reaction plane is determined by the eigenvector
defining the largest axis of the ellipsoid e, and the beam direction, see Fig. 2.7.
At ultra-relativistic energies the method described above does not work — the
longitudinal momenta are much larger than the transverse momenta and the eigen-
vector defining the largest axis coincides with the beam direction. In this case, one




Basic Dictionary 39

Fig. 2.7 The graphical representation of the sphericity tensor S as an ellipsoid projected
on the reaction plane. The reaction plane is determined by the beam axis z and the vector
defining the largest axis of the ellipsoid e,.

may consider the two-dimensional sphericity tensor, as proposed by Ollitrault in
Refs. [17,18],

N
SY =2 wnbl (Pl ‘ (2:31)
n=1

Here the sum runs again ever all particles registered in one event and pj_ (n) is the
ith component of the transverse momentum vector p L) (4,7 = 1,2). Here also
different choices for the weights wy, are used. In particular, w, ~ 1/p? (n) in [18,19].

The tensor Sﬁf has three independent components and is fully determined by its
two eigenvalues s; and sy (one usually assumes that s; > s2) and the angle Ugrp
between the laboratory z1a,-axis and the eigenvector associated with the eigenvalue
51 (—m/2 < ¥rp < m/2), see Fig. 2.8. Instead of the eigenvalues s; and sy we may
also choose the variables

L K S ’— S
FE s (s14s), Ms=122 (2.32)
4 2 4 e i & '-"‘?{/1'," .‘¢82
Then, the two-dimensional sphericity tensor ij may be written in the matrix form
as

(2.33)

S =3 1+ Ascos2¥grp As SiI.l 2URrp
L Assin2¥grp 1 — Ascos2¥gp /°

At ultra-relativistic energies, the physical system created initially in non-central
collisions has smaller size in the direction of the impact parameter than in the
perpendicular direction (when projected on the transverse plane). This effect causes
that the matter expands preferentially in the direction of the impact parameter, see ‘
Sec. 2.5.2. Since the angle Wrp defines the direction of the maximum kinetic-energy
flux we identify this direction with the orientation of the reaction plane.
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Fig. 2.8 The graphical representation of the sphericity tensor ij as an éllipse. The angle
Wrp determines the direction of the z-axis with respect to the laboratory zj.p-axis.

2.4.2 Transverse-momentum method

The transverse-momentum method was introduced by Danielewicz and Odyniec
[20]. In this approach the reaction plane is defined by the direction of the beam
and the vector Q defined by the equation

; N . 5
Q=3 wpiey (2.34)

The standard choice for the weights w, is

+1 if y>yems+9
Wy, = 0 if Yems—0<y<Vems+9 (2.35)
-1 if y<yems—0.

Here yems is the center-of-mass rapidity of the colliding system and the parameter
0 is introduced to exclude the particles from the midrapidity region, which add
random fluctuations to the calculations [21]. The positive and negative weights are
necessary to obtain a non-zero signal. Due to the overall momentum conservation,
the contribution of the particles with y > yems + 6 is compensated by the contribu-
tion of the particles with y < ycms — 8. The quantity Q may be interpreted as the
transverse-momentum transfer between the target and projectile regions.

2.4.3 Fourier analysis method

The sphericity and transverse-momentum methods yield comparable results, as
shown for example in [16]. These two methods may be regarded as the two special
cases of a more general method which is based on the Fourier expansion of the mo-
mentum distributions in the azimuthal angle. In the Fourier analysis method one
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considers the two-dimensional vectors Qk = (ka, Qk,y) defined by the equations

N
Qiz = ) wn cos(kdf) = Qy cos(kTy),

n=1
Qry = Y wnsin(kg(™) = Qg sin(kTy). (2.36)
n=1

Here ¢(") is the azimuthal angle of the transverse momentum of the nth particle
and the sum runs over N particles in an event. The weight wn is usually taken
to be the transverse energy or the transverse momentum. For odd harmonics the
Welghts in the projectile rapidity region are p031t1ve while in the target rapidity
region they are taken with a negative sign. The orientation of the reactlon plane
may be calculated from the equation

Ugp = ¥; = arctan (Qﬁ) . (2.37)

1,z
At ultra-relativistic energies, the practical application of Eq. (2.37) may be difficult
and one uses the expression related to the second harmonics

Q2 Yy
= == : 2.
Upp = Uy = 5 arctan < O (2.38)

This approach is equivalent to the use of the transverse sphericity tensor, see
Eq. (2.31). ;

It must be ‘emphasized that in our discussion of the methods of determination
the reaction plane we have not included the effects of fluctuations. In particular, one
distinguishes between the reaction plane.and the participant-plane. The participant
plane is connected with the initial distribution of the participants realized in_an
event. Even for the fixed impact parameter such distributions may vary.due to
the ‘statistical ﬂuctuatlons The experimental methods pin down the position of
the participant plane rather than the position of the reaction plane. On the other
hand, the reaction plane is the basic concept entering theoretical modeling where
the position of the impact vector specifies the initial condition. In this situation it is
clear that more precise comparing of the data with the model calculations requires
that the fluctuations are taken into account.

2.5 Collective flows

At present the extraction of the reaction (participant) plane is one aspect of the
very advanced flow analysis of the collisions. In this type of the investigations one
represents the momentum distribution of the produced particles in the form
dN dN
dyd?p,  2mpidp,dy

1+ ) 2k cos (k(¢p — Urp)) |, (2.39)
k=1
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Fig. 2.9 Schematic view of the directed flow observed at relativistic energies. For positive
and large rapidities (y ~ yp) the spectators are deflected towards positive values of z. For
positive and small rapidities (y > 0) the produced particles have negative v1, hence they
are deflected towards negative values of x.

where WUgp is the angle defining the reaction plane. Clearly, the averaging of
Eq. (2.39) over the azimuthal angle gives the transverse-momentum distribution
Eq. (2.2). The coefficients vy characterize the momentum anisotropy. The coeffi-
cient vy is called the directed flow, whereas the coefficient vy is called the elliptic
flow. In general, the coefficients vy are functions of rapidity and transverse mo-
mentum, Uk = Vg (y,pL), and in this form often called the kth harmonic differential
tra,nsverse momentum and rapidity. The use of the names directed flow or e‘llz;)tzc
flow is related to the fact that the coefficients v; and vy are quantitative measures of
the phenomena understood as the collective,. hydrO‘dynaﬁﬁc-like expansion of matter

produced in heavy-ion collisions.
. Q Vv =\
N .
@ y ’}qu(

4"’1»"""‘“ @ y\»k

At low energies, the directed flow is manifested by the reﬂectlon of incoming matter
by the first produced regions of hlghly;gggppwmsﬁgd nuclear matter. The nucleons
moving with positive rapidities are deflected towards. positive.z values, while those
moving with negative rapidities are deflected towards negative x.values. The mag-
nitude of the deflection probes the compressibility of the nuclear matter. It also

probes the system at early time because the deﬂection takes place during the pass—

2.5.1 Directed flow

complex [24]. At positive rapldltles ‘the proton dlrected ﬂow is posmve while the
pion directed ﬁow is negatlve, see Fig. 2.9. This suggests a different origin of v;
of p protons ‘and pions. At the RHIC energies the directed flow of charged particles
is negatlve, whereas the/ vlz of the spectator neutrons is positive. This trend in the
data suggests different behavior of the matter created in the central region and in
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Fig. 2.10 The directed flow v1 of charged particles as measured by STAR [22] for three
centralities in Au+Au collisions at /sy = 200 GeV. The arrows indicate v; for spectator
neutrons, and their positions on the pseudorapidity axis correspond to the beam rapidity.
The smaller window shows the midrapidity region in more detail. The figure includes also
the PHOBOS results [23]. Reprinted figure with permission from [22]. Copyright (2009)
by the American Physical Society.

the target/projectile. fra.gmentatlon regions. By the way, at midrapidity the directed

flow measured at RHIC is very small, of the order of 1%, see Fig. 2.10. We note,
that due to,‘the symmetry reasons, vi(—y) = —v1 (y), the directed flow is. exactly

2.5.2 FElliptic flow

The elliptic flow, whose quantitative measure is v, characterizes the azimuthal
asymmetry of the ‘momentum dlStI‘lbllthIlS At lower energies vy is negatlve, in-

‘dlcatlng that more momentum is transferred in the direction perpendlcular to the
reaction plane (out—of—plane flow). At higher energies the elliptic flow becomes pos-

itive, hence the excess of the momentum is observed in the reaction plane (in-plane
ﬁow) Such energy dependence is interpreted as the effect. of spectators. At lower
energies the spectators block the expansion of matter in the reaction plane and the
matter is squeezed out of the reaction plane. At higher energies the spectators move
sufficiently fast, leaving free space for the in-plane expansion of matter.
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Fig. 2.11 In non-central collisions the region of the particle production has an almond W
shape in the transverse plane. Due to the interaction of the produced particles the spatial W
asymmetry leads to the azimuthal asymmetry of the momentum distributions. At ultra c
relativistic energies, the expansion is stronger in the reaction plane — the produced matter
is not blocked by spectators.
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Fig. 2.12 Transverse-momentum dependence of the elliptic flow coefficient v2(y = 0) as
measured by PHENIX [25] at \/snn = 200 GeV for combined 7~ and K~ (top) or =™
and K+ (bottom), and compared with 5 (top) and p (bottom). The results for inclusive
negative (top) and positive (bottom) charged particle distributions are plotted as open F
squares. From left to right, the three different centrality selections are shown: 0-20%, t.
20-40%, and 40-60%. Reprinted figure with permission from [25]. Copyright (2009) by a
the American Physical Society. y
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The first measurements of the elliptic flow at RHIC [26] showed that v, is quite
large and approaches the predictions of perfect hydrodynamics. Generally speaking,
the origin of the non-zero elliptic flow is the interaction between particles produced
in the initially asymmetric region of space — an almond-like shape formed by the
two overlapping nuclei in the non-central collisions, see Fig. 2.11. The interac-
tion between the particles in such an asymmetric region leads to the momentum
anisotropy shown in Fig. 2.12. '

This mechanism may be most easily interpreted in the hydrodynamlc approach,
where the largest pressure gradient acts in the reaction plane. In particular, the
approaches based on the perfect hydrodynamics yield large elliptic flow, since per-
fect hydrodynamics corresponds formally to the limit where the cross sections are
infinite. Thus, the agreement of the observed vy with the perfect hydrodynamics

nd ‘ was interpreted as a signature of the very fast.thermalization of the system and
ial was considered as one of the most important discoveries at RHIC, which led to the
;ra concept of the strongly 1nteract1ng quark-gluon-plasma (§QGP

er

2.6 Stopping and transparency

_baryons are not slowed down and the two baryon—rlch reglons are

| Sy b
central region (ower -

target fragmentation  projectile fragmentation

region region
't“ﬁ\héxaﬁw-\f oML,
baryon density /\/
| | : -
as — =0 -
3 y=yr  y= y=yp
ve
;n Fig. 2.13 In the transparent collisions the two colliding nuclei are not slowed down and
0,

the two baryon-rich regions are well separated from each other by the central region, where
by a baryon—free quark-gluon plasma is expected to occur. Here yr" is the target rapldlty, and
_yp s the prOJectlle ra.pldlty e
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Fig. 2.14 The net-proton distributions measured in different experiments. Reprinted figure with
permission from [27]. Copyright (2009) by the American Physical Society.

separated from each other (see Fig. 2.13).

In the transparent collisions, the matter produced in the central region has very
small net baryon number and practically zero baryon chemical potential. In this
case, the possibility of creation of the quark-gluon plasma is of special interest, since
theoretical calculations for such a state of matter are especially advanced (most of
the simulations of QCD on a lattice have been performed in the case of vanishing
baryon chemical potential). In the collisions with large stopping power we might
have the opportunity to produce the quark—g n pl sma, at large values of the
‘chemlcal potentlal and, 1n this way, explore the other, less known parts of the phase
dlagram of the strongly 1nteract1ng matter.

" There is a long expectation that at extreme large energies all collisions become
transparent and the central region becomes invariant under Lorentz boosts, see
our discussion in Sec. 2.7. As we shall see in the next Chapters, this symmetry is
used in many models of heavy-ion collisions. It substantially simplifies theoretical
calculations as it reduces the number of independent variables and dimensions.

At the AGS experiments with Au beams (Au+Au at 11.4 GeV per nucleon) the
baryon distribution is approximately Gaussian with a peak in the central region and
the width significantly narrower than that observed in the case of smaller Si+Al
systems. This observation indicates the strong baryon stoppmg On the other hand,
the experiments at the SPS and RHIC show partlal transparency

In order to illustrate this behavior, in Fig. 2.14 we show the compilation done
by the BRAHMS Collaboration [27], which shows the data on the net-proton dis-
tributions measured in differenet heavy-ion collisions. The net-proton rapidity dis-
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tribution is defined as the difference between the proton and antiproton rapidity
distributions,

“dN, protons dN, antiprotons

dy  dy
Figure 2.14 shows that for the systems colliding at the AGS the net-proton density
in the central tapidity r reglon is quite large, ~ 60, indicating a large baryon stopping.
However, when the energy is increased to the maximum SPS values, the net-proton
distribution is reduced and achieves a characteristic shape with two separated max-
ima. This is a characteristic feature of partial transparency, see Fig. 2.13. The
niét-proton density gets smaller and the two maxima move farther apart, when the
energy is increased to the RHIC values.

(2.40)

2.7 Boost-invariance

The concept of the boost-invariant character of the particle production may be
traced back to the seminal paper by Feynman [4]. Feynman envisions the production
of hadrons at very high energies as the radiation of some sort of the field. At high
energy, due to the Lorentz transformation the radiated field is contracted to the
narrow range in the z direction. This means that the Fourier transform leads to a
uniform distribution of the field energy in the longitudinal momentum variable Dy
If we assume that the field energy is distributed among various kinds of particles
in fixed ratios, one may conclude that the mean number of particles of any kind,
multiplied by their energy, is also distributed uniformly. We may then write

dpud pL

17

dN = F(p,) (2.41)

Equation (2.41) is regarded by Feynman as the limiting case of the more general
expression,

dpyd®py

dN = f(p1,zF) F7I (2.42)
D

where

o 2py
TR = %, (2.43)
with s being the Mandelstam variable and p; measured in the center-of-mass frame,
compare Eq. (2.17). In the limit £ < 1 we have f(p1,zr) — F(p.) and Eq. (2.42)
is reduced to Eq. (2.41).
Equation (2.42) represents the Feynman scaling. We shall concentrate now,
however, in more detail on Eq. (2.41). Introducing the rapidity variable we obtain _
the momentum distribution

dN
p F(p1), (2.44)
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which is independent of rapidity (for p < /s).

Generally speaking, the boost-invariance is the symmetry of the physical systems
with respect to Lorentz boosts along the beam axis. It imposes special constraints
on the form of the physical quantities. For example, the thermodynamic functions
used in the relativistic hydrodynamics, such as the temperature, pressure, or the
energy density, are Lorentz scalars. The boost-invariance in this cases means that
they may depend only on the transverse coordinates and the longitudinal proper
time 7 = v/t?2 — 22. Similarly, the rapidity distribution dN/dy is boost-invariant if
it is independent of rapidity.

From the formal point of view, a scalar field (x) has the following transforma-
tion rule

b(a) > (),  Y(@) =), (2.45)

where z,z’ are spacetime coordinates connected by the Lorentz transformation L,
namely 2’ = Lz. The scalar field is invariant under Lorentz boosts along the z axis
if the transformed field in the new spacetime point z’ coincides with the original
field at that point,

P'(a') = (). (2.46)
Combining Egs. (2.45) and (2.46), one obtains the constraint
P(@') = ¥(z), (2.47)

which means that 1 may depend only on the transverse variables x,y and the
longitudinal proper time 7 = v/#2 — 22, as we have stated above.

It is also interesting to analyze the boost-invariant four-vector field. The general
transformation rule in this case is

ut(z) — u'H ('), u'H(z) = L* u” (x). (2.48)

The boost-invariance demands again that the transformed “new” field «'# in the
“new” spacetime point z’ coincides with the original “old” field at this point (we
illustrate this concept in Fig. 2.15, considering for simplicity rotations rather than
Lorentz boosts)

u'H(x') = ut (). (2.49)
Equations (2.48) and (2.49) lead to the condition
ut(z") = L* ¥ (), (2.50)

which states that the transformed boost-invariant field may be obtained by the
simple substitution of the argument, z — 2’

As an example we may consider the four-vector field which describes the hydro-
dynamic flow of matter produced in heavy-ion collisions. With the condition that
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Fig. 2.15 Schematic illustration of the rotational invariance of the vector field. If the
vector field is rotationally invariant, as in panel (a), the rotation of a vector yields the
“new” vector placed in the “new” place that coincides with the “old” vector in the same
“new” place. For example, the dashed arrow in (b), after the rotation by m/3, coincides
with the dashed vector in (c). This property does not hold for the non-symmetric field in
(d). The rotation of the dashed vector in (e) by /3 yields the the dashed vector in (f),
that does not agree with the old vector at that place.

the flow is zero for z = 0 one may check that the boost-invariant form of such a
flow is

_ t T _ T _ 4
ut = (1, vz, vy;v,) = F(7,7,Y) - (1, ;Uw(T, z,Y), ?vy(T, z,y), Z) , (2.51)

where, to fulfill the normalization condition for the four-velocity, utu, = 1, one

assumes
1

e

\/1— 72— 92
As may be inferred from Eq. (2.51), the functions ,, ¥, and 7 are the transverse
components of the fluid velocity and the corresponding Lorentz gamma factor, all

determined in the plane z = 0 (where also 7 = t). The longitudinal flow has the
scaling form

(2.52)

v, = % (2.53)
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It is interesting to note that the requirement of the boost-invariance leads to a more
general form of the velocity, namely, v, = (Az — Bt)/(At — Bz), where A and B
are constants. Only if we add the additional constraint that v, = 0 at z = 0, as
mentioned above, the boost-invariant form is reduced to Eq. (2.53).

We have spent some time discussing the boost invariance because this symmetry
is very frequently used in the models describing the evolution of matter formed in
relativistic heavy-ion collisions. It reduces the number of independent variables and
dimensions, facilitating theoretical calculations. The popularity of using this sym-
metry has its origin in the famous Bjorken paper [28], where he implemented this
symmetry into hydrodynamic equations and made estimates of the initial energy
density accessible in the collisions. Our discussion of the experimental data indi-
cated that the boost-invariance may be regarded as the good approximation only for
the central region of the most energetic heavy-ion collisions. Similarly the Feynman
arguments lead to the boost-invariant spectrum for p; < /s (in the center-of-mass
frame).
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Chapter 3

Glauber Model

In realistic situations the separation between spectators and participants is not so
sharp as in the simple geometric picture of Fig. 2.1. A more elaborate estimate of
the number of participating nucleons can be done within the Glauber model [1-4]
which treats a nucleus-nucleus collision as a multiple nucleon-nucleon collision pro-
cess. In the Glauber model, the nucleon distributions in nuclei are random and
given by the nuclear density profiles, whereas the elementary nucleon-nucleon col-
lision is characterized by the total inelastic cross section oi,. Initially, the Glauber
model was applied only to elastic collisions. In this case a nucleon does not change
its properties in the individual collisions, so all nucleon interactions can be well
described by the same cross section. Applying the Glauber model to inelastic colli-
sions, we assume that after a single inelastic collision an excited nucleon-like object
is created that interacts basically with the same inelastic cross section with other
nucleons. '

3.1 Eikonal approximation

In this Section we introduce the eikonal ! approximation. It is used below as one
of the elements of the Glauber multiple scattering model, see also [6]. The eikonal
approximation is the classical approximation to the angular momentum. It may
be applied to the standard expansion of the elastic scattering amplitude into the
angular-momentum eigenstates defined by the orbital number I,

1 . '
f(s,t) = 2ip ;(Zl +1) [e* — 1] Py(cos®). (3.1)
Here s and t are the Mandelstam variables [7], i.e., the center-of-mass energy squared

and the invariant momentum transfer squared,

s=(p1+p2)? t=(@—-p)* (32)

In Eq. (3.2) p; is the four-momentum of the projectile, py is the four-momentum of
the target, and pj is the four-momentum of the scattered projectile particle. The

1The word eikonal is of Greek origin. It is related to the words icon and image [5].

53
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Fig. 3.1 Geometry of the high-energy elastic scattering process. The projectile particle
moves along the z-axis. The momentum transfer three-vector q lies in the transverse plane.

variables s and ¢ may be expressed by the three-momentum of the projectile p and
the scattering angle 6, both determined in the center-of-mass frame. If the particles
have the mass m, the appropriate relations have the form

jﬁ =cosf — 1. (3.3)
In Eq. (3.1) P, is the Legendre polynomial of the Ith order, depending on the cosine
of the scattering angle 6, and §; is the phase shift. We note that the phase shifts
contain the whole information about the scattering process and in general may
contain a non-zero imaginary part 2.

High-energy elastic scattering processes are far from being spherically symmet-
ric, hence the large values of [ dominate in Eq. (3;1) and we may write

s = 4(m” + p?),

1
pb=l+§, (34)

where b is the impact parameter. For large [ and small scattering angles 6 the
Legendre polynomial P;(cos §) may be approximated by the formula

27
Py(cos ) = / gei(2l+1)sin(0/2)cos(¢)‘ (3.5)
0

2The popular way of writing the amplitude is then f=1/(2ip) 3, (21 + 1) [m 2 — 1] P, where
m is the inelasticity coefficient.
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At high energy, the momentum transfer vector q = p’ — p lies in the transverse
plane, see Fig. 3.1, and we may rewrite the argument of the exponential function
in (3.5) as a scalar product of q and b,

(20 + 1) sin (g) cos(¢) = 2psin (g) ”—pl@ cos(#) =q-b.  (36)

In this way we find the convenient expression

27
0

27
Pi(cosf) = / 9 iab, (3.7)

After replacing I by b we may treat b as the continuous variable (with db = dl/p
and d?b = bdbd¢). In this approximation, the scattering amplitude has the form

A 2 27 Lig-b [ Jix(s,b)
f(s,t) =22 /d’ be [1 ¢ ] , (3.8)
where the phase shift of the proje}:tilé is defined as
x(s,b) = 24(s,b). (3.9

The total cross section may be obtained from the forward scattering amplitude with
the help of the optical theorem

4 .
ot = ?ﬂlm F(s,t=0)=2 / d?b [1 —Re ezx(s"”] : (3.10)

On the other hand, the elastic cross section is obtained by squaring the amplitude
and integrating over the solid angle. Since the scattering is concentrated in the for-
ward direction, the integration over the solid angle may be replaced by the integral
over the space orthogonal to the momentum vector p, see Fig. 3.1,
d2
aQ = —p?q. (3.11)
Using this property we obtain

dzq 2 21/ _iq-b ix(s,b) | ,—iq-b’ ix(s,b’) *
Uel—/m/db/dbe [1—6 ]e |:1—‘6 ]
. 2
= / d2b11 - ezx(s,b>| . (3.12)

Finally, the inelastic cross section is

Oin = Otot — Oel = /de (1 —

We note that oy, is different from zero only if x(s, b) has a non zero imaginary part.

. 2
x| ) . (3.13)
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3.2 Nucleon-nucleon collisions

The main feature of the nucleon-nucleon (pp) interaction is that the total cross
section for this process is about 40 mb, and this value is approximately constant
in the energy range: 3 GeV < /s < 100 GeV. The inelastic cross section in this
range gives the main contribution to the total cross section. A certain subclass
of the inelastic processes is the diffractive dissociation process. In this process a
nucleon is only slightly excited and a small number of particles is produced, which
is in contrast to the typical nondiffractive inelastic events. The diffractive processes
represent about 10% of all inelastic collisions. ‘

3.2.1 Energy dependence of particle production

In the following we shall discuss the inelastic processes having in mind only the non-
diffractive processes. In such a typical inelastic nucleon-nucleon collision a certain
number of charged particles is produced. The average charged particle multiplicity
may be described by the phenomenological formula [8]

2
Nan = 0.88 + 0.441n — +0.118 (ln i) , (3.14)
i So S0

where sg = 1 GeV. Another phenomenological formula may be used to describe the
average charged particle multiplicity at midrapidity
dN NN
dn

2
=25-0.25In ;s- +0.023 (ln i) . (3.15)
0

17:0 S0

Equation (3.15) is a parametrization of the pp data obtained by the UA5 and the
CDF group in the range 50 GeV < /s < 2000 GeV [9].

3.2.2 Thickness function

Let us consider a nucleon-nucleon collision at a given energy +/s and at an impact
parameter b, see Fig. 3.2 (a). According to our discussion presented in Sec. 3.1,
Eq. (3.13), we may introduce the probability of having a nucleon-nucleon inelastic
collision

p(b)=(1-

The function ¢ (b), defined by Eq. (3.16), is called the nucleon-nucleon thickness
function. The integral of p (b) over the whole range of the impact parameter should
be normalized to o;,. Thus, the thickness function is normalized to unity

/d2bt(b) =1 (3.17)

For collisions with unpolarized beams ¢ (b) depends only on the magnitude of b.

3 2
e’X(b)‘ ) =t (b) 0. (3.16)

.
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Fig. 3.2 A nucleon-nucleon collision (a), a nucleon-nucleus collision (b), and a nucleus-
nucleus collision (c) seen in the plane transverse to the collision axis z. The impact vector
is denoted in each case by b. The positions of nucleons in the nuclei A and B are denoted
by the vectors s4 and sp, respectively.

3.3 Nucleon-nucleus collisions

3.3.1 Nuclear density profiles

We consider next the nucleon-nucleus collision in the Glauber framework. The
probability of finding a nucleon in the nucleus with the atomic mass number A is
the usual baryon density divided by the number of baryons in the nucleus. For large
nuclei, one commonly uses the Woods-Saxon function [10]

_ ~Po
palr) = A(1+exp [=0])’ (3.18)

with the parameters 3:

ro = (1.124Y3 — 0.86A7/3) fm, (3.19)
a = 0.54fm, (3.20)

and
po = 0.17 fm ™3, (3.21)

3Qur definition of p4(r) includes A in the denominator, because we want to interpret pa(r) as
the probability distribution.
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0.03
0.025

0.02

To in

0.015

0.01

0.005

r [fm]

Fig. 3.3 Thickness functions T'a(r) and Taa(r) for the gold nucleus (A = 197), multiplied
by the nucleon-nucleon inelastic cross section oin= 30 mb. The baryon distribution in the
nucleus is described by the Woods-Saxon function (3.18) with the parameters given by
Egs. (3.19)-(3.21). The nucleon-nucleon thickness function is approximated by the Dirac
delta function.

The parameter pg is the nuclear saturation density. In simple estimates one may
also use a sharp-cutoff distribution

3

nml @), (3.22)

pa(r) =

where 0(z) is the step function and the radius R ~ 1.124/3 fm is determined by
counting the number of nucleons in the nucleus,

§WR3p0 = A (3.23)

The nucleon-nucleus thickness function for the nucleus A is obtained from a
geometric consideration depicted in Fig. 3.2 (b) and the assumption that the nucleon
positions in the nucleus A are not changed during the collision process. In this way
we obtain

Ts (b) =/dZA/dQSApA(SA,ZA)t(SA-—b). (3.24)

Here the transverse coordinates are denoted by the vector s 4, and we use notation

pa(sa,za) = pa (\/si —l—zi) . (3.25)

Equation (3.17) implies the normalization condition

/d2bTA (b) = 1. (3.26)

]
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3.3.2 Independent collisions

The quantity T4 (b) oin is the probability that a single nucleon-nucleon collision
takes place in a nucleon-nucleus collision at the impact parameter b. Treating all
possible nucleon-nucleon collisions in the nucleon-nucleus collision as completely in-
dependent and characterized by the same cross section, we easily find the probability
of having n such collisions. The latter is expressed by the binomial distribution

P(n;A;b) = (1:) [1—T4 (b) oin]* " [Ta (b) oin]™ . v (3.27)

The average number of binary nucleon-nucleon collisions may be calculated from
Eq. (3.27) which gives

n(A;b) = EA: nP (n; A;b) = AT4 (b) Oin. (3.28)
n=1
Similarly, we find
n2 (A;b) = ZnZP (n; A;b), (3.29)
which gives us the variance
An? (A;b) = n2 (4;b) — 72 (A;b) = AT4 (b) 0in [L — T4 (b) oin] - (3.30)

Figure 3.3 shows that the condition T4 (b) oin < 1 is quite well satisfied for the
realistic nuclear density profiles. In this situation, for n < A Eq. (3.27) may be
approximated by the Poisson distribution

P(n;A;b) =

L’l(_‘%_'i)]_ exp [-7i (4; b)]. (3.31)

Since the scale at which the nucleon-nucleon thickness function varies is typically
smaller than the scale at which the nuclear density changes, we may often replace
t(s4 — b) in Eq. (3.24) by the delta function §®(s4 — b). In this approximation
T4 (b) is the nuclear density projected onto the transverse plane

Ta (b) = / dza pa(b, z4), (3.32)
and the average number of the collisions is

7 (A;b) = Ao / dza pa(b, ). (3.33)




60 PHENOMENOLOGY OF ULTRA-RELATIVISTIC HEAVY-ION COLLISIONS

3.4 Nucleus-nucleus collisions

Finally, we define the thickness function for the nucleus-nucleus collision. A geo-
metric consideration shown in Fig. 3.2 (c) leads to the formula

Tap (b) = /dzA/dzsApA(sA,zA)/dzB/dQSB pB(sB,zB) t(b+sp—sa),
(3.34)
with the corresponding normalization condition

/ d*bTap (b) = 1. (3.35)

The quantity T4 p (b) 0in is the averaged probability that a nucleon-nucleon collision
takes place in a nucleus-nucleus collision characterized by the impact parameter b.
In the limit ¢(b) — §®)(b) we may write

Tap (b) = /d23A/dZA pA(SA,ZA)/dZB pB(sa —b,zp)

= /dZSA TA(SA) TB(SA — b), (3.36)

or in a more symmetric form

Tap (b) = /d%TA (s + %b) Ts (s - %b) : (3.37)

The nucleus-nucleus thickness function 745 (b) can be used to calculate the prob-
ability of having n inelastic binary nucleon-nucleon collisions in a nucleus-nucleus

collision at the impact parameter b. Similarly to the nucleon-nucleus case, see
Eq. (3.27), we obtain

AB
n

P (n; AB;b) = ( ) [1 = Tag (b) 03] *® " [Tu5 (b) 01a]" . (3.38)

The results for the average number of the collisions 72 (AB;b) and the dispersion
An? (AB;b) are of the same form as Eqs. (3.28) and (3.30), for example
n(AB;b) = ABTag (b) oin- (3.39)

For n < AB one may also approximate Eq. (3.38) by the Poisson distribution.

3.4.1 Total inelastic cross section

The total probability of an inelastic nuclear collision is the sum over n from n = 1
ton = AB

AB
Py (AB;b) =) P (n; AB;b) =1~ [1 — Tap (b) o] *” . (3.40)

n=1
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From Eq. (3.40), by integrating over the impact parameter space, one may obtain
the total inelastic cross section for the collision of the two nuclei A and B (see
also [11])

oAB = / d2b (1 —[1-Tap (b) ain]AB) : (3.41)

Using the thickness function for the Au+Au collisions we find aA“A“ = 6.8 b for
oin = 30 mb and UA“A“ = 7.0 b for o3, = 40 mb. We note that those cross sections
are larger than the geometric cross section o/42A" = 47R? ~ 514%/3 = 5.3 b. This
is due to the tails of the Woods-Saxon distribution (3.18), which make possible that
a nucleon-nucleon collision occurs in the nuclear collision at the impact parameter
b larger than 2R.

In order to derive Eq. (3.41) we used, from the very beginning, the averaged
probability for nucleon-nucleon collisions given by the thickness function (3.34). In
more realistic calculations we proceed in a different way. We first consider the case
where the positions of nucleons in the target and projectile nucleus are fixed, and
the averaging is done later. The probability of an inelastic collision for a fixed
nucleon configuration is given by the more accurate formula

1—HH 1—t(b+s? —s)ow]. (3.42)
j=1li=1
The probability of an inelastic nuclear collision at the impact parameter b is then
obtained by averaging of Eq. (3.42) over the nucleon positions. If the positions are
uncorrelated we may use the formula

Py, (AB;b) = / sPTa(s) - - - d?s4Ta(sh) / d?sPTp(sP) - d?sBTp(sB)

X 1—HH 1—t(b+sP—st)ow]p. (3.43)

The integration of Eq. (3.43) over the impact parameter gives the inelastic nuclear
cross section o/iZ. One can notice that Egs. (3.40) and (3.43) differ from each
other. The more accurate formula Eq. (3.43) is much more complicated to handle
and cannot be simply reduced to Eq. (3.40). Only in the case of nucleon-nucleus
collisions the two methods are equivalent. Since there is no good analytic method
to evaluate Eq. (3.43) for large values of A and B, one is most often satisfied with
Eqgs. (3.40) and (3.41) only. These equations are called the optical limit of the -
Glauber model 4.

4In this approach the center-of-mass correlations, i.e., the conditions s‘f +oe 44 4 = 0 and
5{3 +---+sB 5 = 0 may be also taken into account in the analytic way, for example see [12].
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The precise calculations of the cross sections, based on Eq. (3.43), are of course
possible with the help of the Monte Carlo simulations. Different Monte Carlo real-
izations of the Glauber model are publicly available at the moment. One of them
is the program GLISSANDO [13]. With o, = 42 mb GLISSANDO gives the to-
tal inelastic cross section oA"At = 6.4 b. This value is used in the hydrodynamic
calculations presented in Sec. 22.1.1.

3.4.2 Ezclusion of elastic processes

Our expressions for the probabilities P (n; AB;b) include the elastic process corre-
sponding to the case n = 0. If we are interested only in the inelastic nucleus-nucleus
collisions, we should renormalize our results by the factor

S B, P(n,AB;b) _
S>45 P (n, AB;b)

(1 —[1 - Tap (b) ain]AB) - (3.44)

Hence, the average number of binary nucleon-nucleon collisions in an inelastic
nucleus-nucleus collision at the impact parameter b is

ABTAB (b) Oin

Tin (AB;b) = . (3.45)
(1- 11~ Tan (B)oul*?)
Further averaging over the impact parameters yields
=AB _ f d?b my, (AB;b) (dai‘;‘,B/dzb)
o [ d2b (do{iB /d?b)

d?bn(AB;b in
_ J 4 (AB;b) S =AB 5 (3.46)

[ d2b (1 —[1 = Tap (b) oin] ) oh

3.5 Wounded nucleons

The Glauber model can be used also to calculate the number of the participants.
To be more precise we distinguish between the participants which may interact
elastically and the participants which interact only inelastically. Following Ref. [14],
the latter are called the wounded nucleons 5. The probability that the nucleon ¢

5Very often the difference between the participants and the wounded nucleons is neglected, and
these two terms are treated equivalently. Since the elastic part of the nucleon-nucleon cross section
is much smaller than the inelastic part, this approach is admitable as long as we do not analyze
details of the collision process. It is also worth to mention that the experimental groups use very
often their own definitions of the number of participants, influenced by the technical possibilities
of determining Npart or by the specific Monte-Carlo implementations of the Glauber model.
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from B is wounded, i.e., it collides inelastically with anyone of the nucleons in the
nucleus A is [14]

A
p(sf; A;sf, .., s4;b) =pa (sP) =1- [Ji-t(m+s?- s7) o). (3.47)
j=1

Now the impact parameter b is the distance between the trajectories of the centers
of the nuclei as defined in Sec. 2.1, see Figs. 2.1 and 3.2 (c). After integrating
over different configurations of the nucleons in B we obtain the probability that wg
nucleons in B suffered at least one collision

P (wp; B, A;sf., ., s4b) = (g) [1—p (At .. shib)] P2
x [p (459, ...,54; D)7, (3.48)
where
P (45, .., 84;b) = /d2sB Tg (s¥) p (s®; 4;sf, ..., s4;b) (3.49)

= [#8Ty o- ) [1- [T 11167 st

The average number of the wounded nucleons in B (at fixed impact parameter b)
is

B
Wp (B; A;st, ..., s4;b) = Z wp P (wp; B; A; sy, ...,s4;b) (3.50)
wp=1
B B B
_ _5\B-wBzwp _ pm(4. A A.
..wlewB <wB)(1 P) °p B Bp(A,sl,...,sA,b).

Averaging over the configurations of the nucleons in the nucleus A gives
Wg (B; A;b) = B / d?sfTa (sf) - / d*s4Ta (s4) (3.51)

X /dsz Tp (b—s") [1-J] [1—t(s® - s2) oun]

<.
Il
—




64 PHENOMENOLOGY OF ULTRA-RELATIVISTIC HEAVY-ION COLLISIONS

This result can be simplified if we assume that the nucleon-nucleon thickness func-
tion can be approximated by the Dirac delta function, ¢(b) — 6@ (b). In this
case

Wp (B; A;b) =B / @257 T (b —57) (1= [1 - Ta (s7) o). (352

Since the number of wounded nucleons in the collision of A and B is the sum of the
wounded nucleons in the nucleus A and B, we obtain

w (A; B;b) = A/dstA (b—s) (1 —1—-oinTB (s)]B)
2 A
+B / PsTp(b-3) (1-1-ouTa@I"). (359
Finally, averaging over different impact parameters we find

_ [d*bw(A; B;b) (doiB /d2b)

waB = T d2b (doAB /d2b) (3:54)

If we want to exclude the elastic collisions, in analogy to Eq. (3.46) we may use the
formula

ZAB _ [ d?bw (A; B;b)
7 T d2b (dofiB /d?b)

(3.55)

Note that for A = B = 1 Eq. (3.55) gives wHPB = 2. Of course, this is an expected

result for the nucleon-nucleon collisions.

It is important to realize that the number of the binary nucleon-nucleon collisions
is very much different from the number of the wounded nucleons (participants). In
Table 3.1 we show the results of the calculations done for Au+Au collisions at
different values of the impact parameter b. We used two values of the nucleon-
nucleon cross section: oj, = 30 mb, and o = 40 mb. We observe that the number
of the binary collisions, 71(b), is usually much larger than the number of the wounded

" nucleons, w(b). Moreover, i(b) depends more strongly on oin than w(b) does.

3.6 Soft and hard processes

It is an experimental fact that pions (the most abundant particles produced in a
nucleon-nucleon as well as in a nucleus-nucleus collision) have on average small
transverse momenta, p1 ~ 400 MeV (see our discussion in Sec. 2.2.1 and Fig. 2.3).
The processes leading to the production of such low-energetic pions are called
soft processes. On the other hand, the pions with large transverse momenta,
py > 1-2 GeV, are produced by hard processes. The soft processes cannot be de-
scribed directly by perturbative QCD. In this case the strong coupling constant is

=

n < 13
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Table 3.1 The numbers of binary collisions, 7(b), and the
numbers of wounded nucleons, w(b), for Au+Au collisions
(A = 197) at different values of the impact parameter b.
The results are presented for two different values of the nu-
cleon-nucleon inelastic cross section: oy, = 30 mb (the sec-
ond and the third column), and oi, = 40 mb (the fifth and
the sixth column). The fourth and seventh columns give
geometric estimates of the centrality class of the collisions
with the impact parameters smaller than b (the fourth col-
umn is for cr;‘:‘)“A“ = 6.8 b, whereas the sixth column is for
a'{}luA“ =7.0D).

b [fm] 7)) w(b) c nb) wb) c

881 370 0.00 1174 378  0.00
859 363 0.00 1146 371 0.00
- 801 344 0.02 1068 354 0.02
717 315 0.04 957 326  0.04
617 280 0.07 823 291 0.07
587 241  0.12 783 251  0.11
397 200 0.17 530 211  0.16
298 160 0.23 397 170  0.22
209 122 0.29 279 131 0.29
136 88 0.37 182 95 0.36
82 58 0.46 109 64 0.45

SOXNDOUR WO

large and the nonperturbative effects, which are very difficult to deal with, are im-
portant. Contrary, the hard processes involve large momentum transfers connected
with a small value of the strong coupling constant. Hence, they can be described
successfully by the methods of perturbative QCD.

In the previous Section we have calculated the number of the wounded nucleons,
WaB, and the number of Hinary nucleon-nucleon collisions, Tisp, in a collision of
the two nuclei A and B. An interesting question is whether the knowledge of Wy g
and Maop may be used to make an estimate of the multiplicity of the particles
produced in a nuclear collision, provided the information about the multiplicity of
the particles produced in a more elementary nucleon-nucleon collision (at the same
energy) is available. For hard processes it is natural to assume that the number of
the produced particles scales with the number of binary collisions. In this case the
scattering processes are well localized and the interference effects between different
collisions may be neglected. For soft processes the appropriate scaling is more |
difficult to find. In fact, it is a postulate of the wounded-nucleon model proposed
in Ref. [14] that the multiplicity of soft particles scales with the number of the
wounded nucleons. We discuss this model in more detail below.
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Table 3.2 Estimates of the charged particle multiplicities obtained from the wounded
nucleon model, %‘u‘) 44 NNN, compared with the measured multiplicities, Naa, for
different reactions studied by the NA49 [16] and PHOBOS Collaborations [17]. The
last column shows the ratio of the measured multiplicity and the model prediction.

Expt. El.p/A [GeV]  /snn [GeV] Naa Waa %EAA Ny~ r

NA49 40 8.8 693 349 875 0.79
NA49 80 12.3 1029 349 1059 0.97
NA49 158 17.3 1413 362 1307 1.08
PHOBOS (9000) 130.0 4200 355 2902 1.45

3.7 Wounded-nucleon model

Biatas, Bleszyniski and Czyz argued [14] that the average multiplicity in a collision
of two nuclei with the mass numbers A and B is

— 1 —
Nap = 5WaB Nxn, (3.56)

where Ny is the average multiplicity in proton-proton (nucleon-nucleon) collisions,
and W g is the average number of the wounded nucleons (calculated in the Glauber
framework). The energy dependence of Nxn is described by Eq. (3.14). The moti-
vation for the use of Eq. (3.56) came from the interpretation of the nucleon-nucleus
interactions. The formula (3.56) with an additional expression for the dispersion of
multiplicity distributions form the main ingredients of the wounded-nucleon model
of the nucleus-nucleus collisions [14].

The question may be asked about the physical picture leading to the main
assumption of the model. The simplified answer is that the particles are produced
by the decays of nucleons which are excited by soft collisions. Multiple soft collisions
change only the excited states of the nucleons, but they do not contribute to the
particle creation process. Each excited nucleon produces particles at the moment
when it leaves the interaction region, so the multiplicity is proportional to the
number of the excited nucleons (which are nothing other but the wounded nucleons
in this case). More detailed analysis of the foundations of the wounded nucleon
model refers to the issues of the formation time of hadrons. For a recent discussion
see [15].

To see how Eq. (3.56) works in practice we may analyze the most central collisions
at the SPS and RHIC. The NA49 Collaboration measured the total multiplicities
of charged pions and kaons at different beam energies: Ejap = 40, 80, and 158 A
GeV [16]. In each case the number of the wounded nucleons was also calculated
with the help of the Monte-Carlo simulations. Those results are shown in Table 3.2
(the fourth and the fifth column) and used to obtain the wounded-nucleon-model
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Fig. 3.4 The charged particle pseudorapidity density as a function of the number of the
participants. The measurement of the PHENIX group at RHIC, VSN = 130 GeV, is
compared to the measurement done by the WA98 group at the SPS, /sxn = 17.3 GeV.
Reprinted from [18] with permission from Elsevier.

estimate (the sixth column). The last column gives the ratio of the experimen-
tally measured multiplicity to the model prediction. Table 3.2 contains also the
result of the PHOBOS Collaboration [17] for the most central Au+Au collisions at
v/SNN = 130 GeV. We observe that the ratio r is close to unity, which indicates the
general agreement of the wounded-nucleon model with the data. Nevertheless, at
smaller energies the wounded-nucleon model overpredicts the measured multiplic-
ity, whereas at higher energies (especially at RHIC) the predicted multiplicity is
too small. The increase of the ratio r with the energy may indicate that the role of
the hard processes becomes more and more important as we pass from low to high
energies. Naturally, a contribution to the particle production coming from the hard
processes scales with the number of the binary collisions, which is much larger than
the number of the wounded nucleons (see Table 3.1).

The concept of the wounded-nucleon model may be applied also to the collisions
at fixed beam energy. In this case we analyze the collisions with different impact
parameters and observe if the multiplicity of the produced particles scales with the
number of the wounded nucleons. In other words, we check the condition

w (A; B;b) ,
or, restricting ourselves to the central region in rapidity, we may also verify the
formula

= const., (3.57)

1 dN 45 (b)
w (A; B;b) dn =0
The results of such investigations performed at RHIC by the PHENIX Collabo-
ration [18] are shown in Fig. 3.4 (Au+Au collisions at \/sny = 130 GeV). We

= const. (3.58)
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Fig. 3.5 The nuclear modification factor Rga, as measured by the PHOBOS Collaboration at
BNL. Reprinted figure with permission from [20]. Copyright (2009) by the American Physical
Society.

can see that the number of the produced charged particles N, grows slowly with
the increasing number of the participants, Npar¢. This effect is a deviation from
the wounded-model conjecture (3.58). Similarly to our previous discussion of the
energy dependence, the excess of the produced particles in this case may be also
connected with an additional hard contribution proportional to the number of the
binary collisions. To quantify this contribution one usually fits the experimental
results to the formula

dN a
—ob)| =
7 n=0

wWagp (b) + BTas (b). (3.59)

DR

The relative magnitude of the coefficient o and S characterizes the role of the hard
processes. The PHENIX measurement gives §/a = 0.15. Similar values were also
obtained by PHOBOS [19].
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3.8 Nuclear modification factor

A simple way to quantify the differences between the nucleus-nucleus collisions and
the nucleon-nucleon collisions is to calculate the nuclear modification factor,

1 d®Nag, 1 do™®
R [ —incl .60
AB(p.l) map dpidn ' oty dpidn , (360)

Here N 45 is the average number of particles produced in the collisions of the nuclei
A and B, and T4 p is the number of the binary nucleon-nucleon collisions obtained
in the framework of the Glauber model, see Eq. (3.39). The produced particles
are typically the charged hadrons or, what is more difficult to measure, the neutral
hadrons, e.g., the neutral pions. The denominator of Eq. (3.60) is the inclusive
cross section for pp collisions divided by the total cross section. This quantity, as
explained in more detail in Chap. 30, is equal to the average number of particles
produced in pp collisions in the appropriate phase-space interval,

dNpp 1 dof?,
= —_ Xind 3.61
dpidn  of dpidn (3.61)

If the collisions of the nuclei A and B are simple superpositions of the elementary
pp collisions, the scaling with the number of binary collisions should hold, and the
nuclear modification factor is expected to be equal to 1.

In Fig. 3.5 we present the results obtained by the PHOBOS Collaboration [20].
The nuclear modification factor Ryay (A = deuteron, B = gold) is shown as a
function of the transverse momentum of charged hadrons for four different centrality
classes. One can see that within the experimental errors Rga, levels off at large
momenta, p1 ~ 2 GeV, and approaches unity. This type of behavior indicates
that the scaling with the number of binary collisions is indeed appropriate at large
momenta.

In Fig. 3.6 we show the results delivered by the BRAHMS Collaboration [21].
In this case the three panels on the left-hand-side describe the data at midrapid-
ity, n = 0, whereas the three panels on the right-hand-side describe the data at
1 = 2.2. The two upper panels show the nuclear modification factor Rauay for cen-
tral collisions (centrality class 0-10%), the two panels in the center show Rayay for
peripheral collisions (centrality class 40-60%), and the two lower panels show the
ratio of the central data to the peripheral data, Rauau(0-10%)/Rauau(40-60%).
At first we may notice a similarity between the peripheral Au+Au collisions and
d+Au collisions shown in Fig. 3.5. In both cases the nuclear modification factor
levels off at p; ~ 2 GeV. This is what one may expect, since the peripheral Au+Au
collisions involve a relatively small number of the participants, and they may be
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Fig. 3.6 The nuclear modification factors Rauau for central and peripheral collisions (the up-
per and central two panels), and their ratio (the lower two panels). The measurement of the
BRAHMS Collaboration at BNL. Reprinted figure with permission from [21]. Copyright (2009)
by the American Physical Society.

equivalent to asymmetric collisions where a smaller nucleus hits a larger one. In-
terestingly, the results at n = 0 and = 2.2 are very similar, indicating that the
same production mechanism is valid at different rapidities. On the other hand, the
nuclear modification factor measured in the central Au+Au collisions shows a clear
deviation from the scaling with the number of the binary collisions. For the cen-
tral Au+Au collisions the measured values of Rayay are always below 1 and differ
significantly from those measured in peripheral collisions.

Such a behavior of the nuclear modification factor Rauay in the central Au+Au
collisions was independently and consistently found by the four RHIC experiments
[20-23]. For example, in the upper panel of Fig. 3.7 one can see the result of the
PHENIX Collaboration [22] confirming that Rayau for central Au+Au collisions is

much smaller than Rgay for the minimum bias d+Au events and shows no leveling
off at unity.
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Fig. 3.7 The nuclear modification factors Rga, and Rayay measured by the PHENIX Collab-
oration at BNL. Reprinted figure with permission from [22]. Copyright (2009) by the American
Physical Society.
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Chapter 4

Spacetime Picture of Ultra-Relativistic
Heavy-Ion Collisions |

In this Chapter we discuss the spacetime evolution of matter created in relativistic
heavy-ion collisions. Our presentation follows the time development of the system.
We start with the introduction of various mechanisms of particle production and end
up with the discussion of the methods used to determine the spacetime dimensions
of the system at freeze-out, i.e., at the stage where the final hadrons are emitted.

The string models, the parton cascade models, and the theory of color glass
condensate are briefly presented in Sec. 4.1. In Sec. 4.2 the intriguing question
of the presumable very fast thermalization/equilibration of the produced quark-
gluon plasma is reviewed. If the state of the local thermodynamic equilibrium
is indeed reached and maintained, the subsequent evolution of the system may
be described in terms of the relativistic perfect-fluid hydrodynamics, whose main
features are summarized in Sec. 4.3 1. The hydrodynamic expansion causes that the
system becomes more and more dilute. The phase transition from the quark-gluon
plasma to the hadronic gas takes place. Here the phenomenological approaches get
in close contact with the fundamental theory, since the hydrodynamic description
may use the form of the equation of state that is obtained directly from the lattice
simulations of QCD. In particular, the information about the phase transition may
be incorporated into the hydrodynamic description.

Further expansion triggers a transition from the strongly interacting hadronic
gas to the weakly interacting system of hadrons which move freely to detectors.
Such decoupling of hadrons is called the freeze-out. The freeze-out is generally a
complicated process that may proceed through several stages — the most impor-
tant ones, known as the thermal/kinetic freeze-out and the chemical freeze-out, are
discussed in Secs. 4.4 and 4.5, respectively. The spacetime dimensions of the system
at the thermal freeze-out may be inferred from the interferometry measurements
which are shortly summarized in Sec. 4.6.

The relativistic character of the particle production, namely, the time dilation
effect, is reflected in the spacetime picture where the fast particles are produced

!In the natural way, the chronological development of the ideas was quite different. At first the
perfect-fluid hydrodynamics was applied, and only later its successes in reproducing the RHIC
data with early starting times suggested early thermalization.
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later, while the slow ones are produced earlier (in the center-of-mass frame). This
means that the evolution of matter in the central region is “measured” by the
longitudinal proper time 7 = v/t2 — 22 rather than by the ordinary laboratory time
t (see our discussion of the boost-invariance in Sec. 2.7). This characteristic feature
is illustrated in Fig. 4.1, where a sequence of different stages in the evolution of
matter is shown.

4.1 Particle production processes

The result of the multiple nucleon-nucleon collisions discussed in the previous Chap-
ter is that the two colliding nuclei evolve rapidly into an extended, hot and dense
system of quarks and gluons. There exist several frameworks to describe this tran-
sition, for example: QCD string breaking, QCD parton cascades, or color glass con-
densate evolving into glasma and later into the quark-gluon plasma. In all cases,
the process of the particle production may be characterized by the decoherence time
Tdec Which is required to form the incoherent distribution of quarks and gluons from
the highly coherent nuclear wave functions. Theoretical interpretations of the data
measured at RHIC suggest that this time is very short, 7qgec < 1 fm. This is so,
because the decoherence time 74ec should be smaller than the equilibration time
Ttherm, and the latter has been found to be a fraction of a fermi at RHIC.

chemical and kinetic
freeze—outs

thermalization

Fig. 4.1 The spacetime diagram of ultra-relativistic nuclear collisions. In the center-of-
mass frame, partons moving fast hadronize later than those moving slowly. Consequently,
at very high energies the evolution of the system at midrapidity is governed by the lon-
gitudinal proper time 7 = v/t? — 22, rather than by the ordinary time ¢. Note, that this
picture breaks in the fragmentation regions (i.e., at large values of |f|) where physical
processes have different character.
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4.1.1 String decays

In the string picture, the nuclei pass through each other and the collisions of the
nucleons lead to the formation of color strings. In analogy to a quark-antiquark
string depicted in Fig. 1.1, the strings formed in nucleon-nucleon collisions may be
imagined as quark - diquark pairs connected by the color field. Such systems may be
naively treated as the excited nucleons. In the next step, the strings decay/fragment
forming quarks and gluons or directly hadrons. The hadrons (sometimes clusters
of hadrons) are modeled as smaller pieces of the original string. Fragmentation of
strings into hadromns is described in the framework of the Monte-Carlo simulations
which originate from the Lund Model [1,2], its Jetset version [3,4], and the Dual
Parton Model [5-8].

Nowadays, the most popular models which incorporate string dynamics are
HIJING (heavy-ion jet interaction generator) [9-13] and RQMD (relativistic quan-
tum molecular dynamics) [14-19]. Besides the string decays these two models in-
clude other important physical effects. For example, following the Fritiof [20,21]
and especially the Pythia version of the Lund Model [22,23], HIJING includes the
production of minijets. The minijets are pairs of partons which go in the oppo-
site directions like standard jets but have transverse momentum which might be
regarded as a lower limit for hard processes, p;, > 2 GeV. This means that the
production rate of minijets may be still obtained from the perturbative QCD. At
present, HIJING is the only event generator for nuclear collisions, which incorpo-
rates such perturbative-QCD effects.

A different physical picture is offered by RQMD. In this case, a dlquark from the
initially spanned quark-diquark string may collide with nucleons. Such collisions
lead to deacceleration of the diquark and, consequently, to large stopping power and
relatively large baryon/energy density in the central region. Moreover, the RQMD
model combines the string dynamics with the classical propagation of hadrons and
formation of resonances. The interactions between the particles drive the system
towards the local equilibrium and develop the collective flow (already in the pre-
equilibrium stage). Another characteristic feature of RQMD is that overlapping
color strings may fuse and form so called color ropes [24,25].

We note that many other models for the relativistic heavy-ion collisions have
been also developed, for example: ATTILA [26], VENUS [27,28], HIJET [29, 30],
or MCMHA [31]. Unfortunately, all these models, including HIJING and RQMD,
are not able to describe successfully the data collected at the RHIC energies.

Production of quarks and gluons by the decays of strings may be also incorpo-
rated into kinetic equations. This case, being a simple model of production of the
quark-gluon plasma from color fields, will be discussed in more detail in Chap. 11.
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4.1.2 Parton cascade model

The parton cascade model [32-36] is based solely on the perturbative QCD. The
colliding nuclei are treated as clouds of quarks and gluons which penetrate through
each other. Multiple hard scatterings between partons as well as the gluon radiation
produce large energy and entropy density.

The initial state is viewed as an ensemble of quarks and gluons determined by
the quark and gluon distribution functions gy (z,Q?) and g(x,Q@?). The Bjorken
« variable is defined as the ratio of the longitudinal momentum of the constituent
of a hadron to the hadron longitudinal momentum in the reference frame where
the hadron has very large energy. The quantity Q? is the parton virtuality. The
fact that partons are confined in hadrons and cannot exist as free particles implies
that they propagate off-shell and @2 is an additional independent variable. A
limited information about the transverse momenta is additionally used to model
the phase-space distributions of partons before the interaction. The subsequent
time evolution of the parton phase-space distributions is governed by a relativistic
Boltzmann equation with a collision term that contains dominant perturbative QCD
interactions. Recently, the parton cascade models have been intensively studied in
the context of the early thermalization problem. We shall come back to this issue
in Sec. 4.2.

It is important to emphasize that both the string approach and the parton
cascade model encounter conceptual problems and limitations. The string picture
becomes invalid at very high energies, when the strings overlap and cannot be
treated as independent objects. On the other hand, the parton approach is invalid
at lower energies, where parton scatterings involve momentum transfers which are
too small to be described by perturbation theory.

4.1.3 Color glass condensate

The color glass condensate [37-40] is nowadays regarded as the universal form of
matter that controls the high-energy scattering of strongly interacting matter. The
high-energy limit is understood in this case as the limit where the energy of collisions
goes to infinity but the typical momentum transfer is finite. This is not the short
distance perturbative limit where both the momentum transfer and the energy go
to infinity. The high-energy limit includes non-perturbative phenomena, although
it is also a weak coupling limit, as < 1.

The idea of the color glass condensate was motivated by the HERA data indi-
cating that the gluon density is rising rapidly as a function of decreasing x. This
implies that the transverse density of gluons also increases. However, since the total
cross sections rise slowly at high energies, the gluons must “fit” inside the size of
the hadron, and the density of gluons should become limited or saturated [41-44].

The emerging physical picture in the transverse plane is that a hadron may
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increased energy

Fig. 4.2 With the increased energy, the colliding hadron looks like a denser system of
smaller gluons.

be viewed as a tightly packed system of gluons that are larger than a certain size
scale. Wlth the 1ncreased energy more gluons are added but their size is smaller, see
Fig. 4.2. In the momentum space there is a critical momentum Qs characterizing the
filling: the gluons with the momentum smaller than Q) are tightly packed, while the
gluons with the larger momenta may still fill the empty space. The saturation scale
increases as the energy increases, hence the total number of gluons may increase
without the bound.

Since the low x gluons are closely packed together, their interaction strength be-
comes weak. Such a weakly coupled gluon system is called a color glass condensate.
The word “color” in the name appears because the gluons are colored. The word
“glass” describes the property of the low = gluons, whose evolution is slow compared
to other time scales present in the problem. The word “condensate” reflects the
large gluon occupation numbers.

The gluons at small z are generated by gluons at larger values of z. In fact, the
fast gluons may be treated as the sources of the slow gluons described in terms of the
classical color fields. The fast gluons are Lorentz contracted and redistributed on
the two very thin sheets representing the two colliding hadrons/nuclei. The sheets
are perpendicular to the beam axis. The fast gluons produce the color electric and
magnetic fields which also exist only in the sheets and are mutually orthogonal 2,
see Fig. 4.3. Because of the uncertainty principle, it may seem that the gluons
associated with those fields have large z, not small. This paradox is resolved by the
fact that the small z gluons are described by the Fourier transform of the vector
potential that exists also in the region outside the sheets. In this way the gluons
with small x have indeed the large longitudinal extent.

Immediately after the collision, i.e., just after the passage of the two gluonic
sheets through each other, the longitudinal electric and magnetic fields are pro-
duced. This form of matter is called the glasma [45]. The physical situation re-
sembles the case of the string models, see Fig. 4.4, however, in the string models
only the longitudinal color electric field is present while the glasma consists of both

2We should be familiar with this picture, see Sec. 2.7 where Feynman’s general ideas about
hadronic collisions were introduced.
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Fig. 4.3 The color electric and magnetic fields describing low = gluons of the color glass
condensate (CGC) befor the collision exist only in the sheets and are mutually orthogonal.
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Fig. 4.4 After the collision, in addition to the transverse CGC fields on the sheets there
are longitudinal color electric. and magnetic fields forming glasma.

the electric and magnetic fields. The glasma fields decay due to the classical rear-
rangement of the fields into radiation of gluons with p; ~ Q. Also the decays due
to the quantum pair creation are possible. In this way the quark-gluon plasma is
produced.

4.2 Thermalization

The experimental data obtained in the RHIC experiments favor a very short ther-
malization/equilibration time, Tiherm < 1 fm. The support for this idea comes
mainly from the observation of the large elliptic flow, an effect explained by the




al.

xre

AT-
ue
is

-
€s
he

Spacetime Picture of Ultra-Relativistic Heavy-Ion Collisions 79

hydrodynamic expansion with an early starting time 7; 3, see our discussion in
Sec. 2.5.2. Within the concept of a strongly coupled quark-gluon plasma such a
short time appears in the natural way, as the strongly interacting system equili-
brates very fast per se. It is still, however, an open problem if the plasma in the
early stage is indeed strongly coupled. In the last decade many different approaches
were used to address the problem of very early thermalization and very often such
attempts considered the plasma as a weakly interacting system. Below, following
Ref. [46], we briefly review several approaches discussing this intriguing issue.

i) The equilibration problem was studied within the parton cascade model. In
its early form, the model included only binary collisions [47]. Further important
developments by Geiger and Muller took into account the gluon radiation in the
initial and final states [32-34, 36]. More recently, the advanced numerical codes
have been developed, which emphasize the role of the multi-particle processes [48-
50]. In Refs. [48,50] the production and absorption 2 <> 3 processes are taken
into account, whereas in Ref. [49] the three-particle collisions 3 < 3 are studied.
Within both approaches the equilibration is claimed to be significantly speeded-up
when compared to the equilibration driven by the binary collisions, however the
determined thermalization times remain larger than 1 fm for RHIC conditions.

ii) In the papers mentioned above, one usually assumed that the initial partons
are produced by hard or semi-hard interactions of partons in the incident nuclei.
In the “bottom-up” thermalization scenario [51], the initial state is described by
the QCD saturation mechanism that is incorporated in the framework of the color
glass condensate. Thus, the initial state is dominated by the small z gluons of
transverse momentum of order @, the saturation scale. Those gluons are freed
from the incoming nuclei after a time 1/Q,. Weak coupling techniques are used,
because @, is expected to be much larger than Aqcp at sufficiently high collision
energies (one expects Qs ~ 1 GeV for RHIC, and Q, ~ 2-3 GeV for the LHC [51]).
The calculations performed within the “bottom-up” thermalization scenario [51],
where the binary and 2 < 3 processes are taken into account, give an equilibration
time of at least 2.6 fm/c [52], see also [53]. _

iii) The most common concept is, of course, that the equilibration of the system
is an effect of parton rescattering. An interesting phenomenon occurs, however,
that the equilibration is speeded-up by instabilities generated in an anisotropic
quark-gluon plasma, [54, 55]. This is so because the growth of the unstable modes
is associated with the isotropization of the momentum distributions, which helps
to achieve the full equilibration. Moreover, the instabilities are much “faster” than
the collisions in the weak coupling regime [54-57].

iv) In several papers the authors argued that the very process of particle pro-
duction leads to the equilibrium state without any secondary interactions. For

3The equilibration time Ttherm denotes the moment when the state of the local thermal equi-
librium is reached. In this book we usually identify it with the time when the hydrodynamic
description may be initialized, Tinerm ~ 73
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example, Refs. [58,59] refer to the Schwinger mechanism of the particle production
in the strong chromoelectric field. However, this approach explains the equilibration
of the transverse momentum only. The approach of Refs. [60,61], where the longi-
tudinal momentum is also thermal, includes the Hawking-Unruh effect: an observer
moving with an acceleration a experiences the influence of a thermal bath with an
effective temperature a/27, similar to the one present in the vicinity of a black hole
horizon.

v) An interesting physical scenario was also formulated, where the thermal-
ization is not an effect of collisions but a consequence of the chaotic dynamics of
the non-Abelian classical color fields, coupled or not to the classical colored parti-
cles [62-64].

We summarize different approaches to the early-thermalization problem with
the conclusion that newly developed simulations based on perturbative QCD as
well as new non-perturbative frameworks may explain the thermalization times of
about 1 fm. Still, the problem exists to explain much shorter thermalization times
used in the hydrodynamic codes that successfully describe the data.

4.3 Hydrodynamic expansion

The production and rescattering of partons is typically described in the framework
of the relativistic kinetic theory — the only approach which is capable of dealing
with non-equilibrium phenomena. This is the reason why the field of the ultra-
relativistic heavy-ion collisions triggered broad interest in the development of the
kinetic theory 4. RQMD and the parton cascade model are good examples of the
progress done in this field.

If the thermalization rate is sufficiently fast, a locally thermalized quark-gluon
plasma is created. In this case, the subsequent evolution of the system may be
described by the equations of the relativistic perfect-fluid hydrodynamics 5. The
use of the relativistic hydrodyhamics simplifies very much our description of the
collision process (provided the thermalization indeed takes place at a certain stage).
The hydrodynamic equations describe local conservation laws of energy, momentum,
baryon number, strangeness, etc., and require knowledge of the equation of state of
the matter. The important point here is that the equation of state may be taken
in the most sophisticated form as that delivered by the lattice simulations of QCD.
In this way the hydrodynamic calculations form a straightforward link between
the QCD first-principle calculations and the dynamic properties of the expanding

4The basic information about the relativistic kinetic theory can be found in Chaps. 8 and 9. An
example of the application of the kinetic theory to describe formation of the quark-gluon plasma
in heavy-ion collisions is presented in Chap. 11.

5The general introduction to relativistic hydrodynamics of a perfect fluid is given in Chaps.
13 and 14. The use of the hydrodynamic equations to describe the evolution of matter in the
ultra-relativistic heavy-ion collisions is presented in Chaps. 20-22.
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fireball formed and experimentally studied in. ultra-relativistic heavy-ion collisions.

The lattice QCD results show a very rapid change of the thermodynamic proper-
ties of the hadronic matter, an effect indicating the presence of the phase transition
from the hadron gas at low temperatures (' < Tc ~ 170 MeV) to the quark-gluon
plasma at high temperatures (T' > T¢). The order of the phase transition is stud-
ied currently by several groups. The accumulated evidence coming from the lattice
QCD simulations suggests that the phase transition at g = 0 is a smooth crossover
— we discuss this issue in more detail in Sec. 5.4. :

If the phase transition were of the first order, a mixed phase consisting of the
plasma and the hadron gas would be created. In such a case one may consider three
steps in the evolution of matter as it passes the phase transition. At first, to a good
approximation the matter is an adiabatically expanding quark-gluon plasma, later
the matter expands as a mixed phase of the plasma and the hadron gas, finally the
matter expands as the hadron gas. Of course, the plasma formed during a collision
should reorganize itself into hadrons again, since finally only hadrons will reach our
detectors.

4.4 Thermal freeze-out

The thermal or kinetic freeze-out is the stage in the evolution of matter when the
hadrons practically stop to interact. In other words, the thermal freeze-out is a
transition from a strongly coupled system (very likely evolving from one local equi-
librium state to another) to a weakly coupled one (consisting of essentially free
streaming particles). It is triggered by the expansion of matter, which causes a
rapid growth of the mean free path, Angp, of particles. The thermal freeze-out hap-
pens when the timescale connected with the collisions, 7eo ~ Amfp, becomes larger
than the expansion timescale, Texp. In this case the particles depart from each
other so fast that the collision processes become ineffective. We may formulate this
condition as the inequality

Teoll = Texp» (4'1)
where the magnitude of the collision time is determined by the product of the
average cross section and the particle density, :

1
Teoll ™~ ;‘;, (42)

whereas the magnitude of the expansion time is characterized by the divergence of
the four-velocity field, u#, describing the hydrodynamic flow of matter [65],

1

Texp ~ =
Oput

(4.3)
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Very often a simplified criterion is assumed which says that the thermal freeze-out
happens at the time ® when the mean free path of hadrons is of the same order as
the size of the system.

In general, the particles with different cross sections (as, e.g., strange and non-
strange particles) may have different freeze-out points, i.e., they may decouple from
the rest of matter at different times. Similarly, different types of processes may
be turned off at different times, as is discussed in more detail in the next Section.
With these remarks in mind it is clear that freeze-out is a complicated dynamic
process [66]. However, if the expansion of the matter is fast, the thermal freeze-out
process is also fast and deserves its name; the momentum distributions of particles
are frozen during a sudden decoupling process and do not change in time anymore
when the particles move freely to detectors. In this case the measurement of the
transverse-momentum spectra reveals information about the state of matter just
before the thermal freeze-out.

In fact, the experimental data show that the hadron spectra in the soft region,
p1 < 2 GeV, have thermal character, although the original thermal distributions are
modified by the collective transverse flow and decays of resonances, see Fig. 4.5. This
observation strongly supports the usefulness of the concept of the thermal freeze-
out. In particular, the model calculations allow us to determine the temperature
and strength of the transverse flow at the decoupling stage 7.

4.5 Chemical freeze-out

The thermal freeze-out described above may take place after the chemical freeze-
out. The concept of the latter is based on the observation that at low colliding
energies the inelastic cross sections are typically smaller than the elastic cross sec-
tions. Therefore, as the hadronic system cools down the inelastic collisions between
its constituents are very likely to cease before the elastic collisions. The moment
when the inelastic collisions stop is defined as the chemical freeze-out. Naturally,
the temperatures corresponding to the two freeze-outs satisfy the condition

Tchem > Ttherm; (44)

where Tchem is the temperature of the chemical freeze-out (inferred from the studies
of the ratios of hadron multiplicities, see remarks below) and Tiperm is the tempera-
ture of the thermal freeze-out (inferred from the studies of the transverse-momentum
spectra).

As the system evolves from the chemical to thermal freeze-out, the dominant
processes are elastic collisions (such as, for example, 7+m — p > 7+7Tor 7+ N —
A — m+ N) and strong decays of heavier resonances which populate the yields of

6Strictly speaking, one should talk about the collection of spacetime points that form a three-
dimensional freeze-out hypersurface in the four-dimensional Minkowski space.

"Popular hydro-inspired parameterizations used to determine the thermal properties of the system
at the thermal freeze-out will be discussed in Chap. 25.
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Fig. 4.5 A schematic physical picture adopted in the thermal models of particle produc-
tion. At a certain stage of the evolution of the system, a gas of stable hadrons and
resonances is formed. The final (measured) multiplicities of hadrons consist of primary
particles, present in the hot fireball, and of secondary particles coming from the decays of
resonances. Reprinted from [67] with permission from Acta Phys. Pol. B.

stable hadrons. Accepting this scenario and assuming that hadrons form an ideal
expanding gas, we may describe the measured ratios of hadron abundances (frozen
at the chemical freeze-out) by a few thermodynamic parameters characterizing the
matter at the chemical freeze-out [68]. In fact, such approach (called commonly the
thermal approach or the statistical approach) turned out to be very successful in
describing the data at the AGS [69,70], SPS [70-74], and RHIC energies [75,76].
An interesting fact was observed by Cleymans and Redlich — the chemical
freeze-out parameters (temperature, chemical potentials and fugacities) at the
CERN/SPS, BNL/AGS and GSI/SIS correspond to a unique value (1 GeV) of the
energy per hadron [77,78]. Another intriguing theoretical observation was made
by Becattini et al. — the statistical models are able to reproduce the particle ra-
tios in e*e™ annihilation processes [79,80] and pp (pp) collisions [81]. Moreover, at
very high energies the temperature obtained from the model calculations, Tehem ~
170 MeV, turned out to be the same for both elementary and nuclear collisions,
although the final-state hadronic interactions (possibly leading to thermalization)
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are completely absent in the eTe™ case. This coincidence may indicate that chem-
ical equilibrium is pre-established by the hadronization process [58,59,79-83] and
explain partially the early thermalization problem discussed in Sec. 4.2.

4.5.1 Little Bang

It is interesting to note that there are analogies between the physics of the ultra-
relativistic heavy-ion collisions and the physics of the Early Universe [84]. We know
that the observed microwave radiation has a Bose-Einstein spectrum, whose tem-
perature is redshifted by the cosmological expansion from the original 3000 K to the
observed 2.7 K. Nota bene, this is the finest example of the Bose-Einstein distribu-
tion known in Nature — deviations from the ideal curve found by the COBE experi-
ment are observed at the level smaller than 1075, In the ultra-relativistic heavy-ion
collisions the measured hadron transverse-momentum spectra are blueshifted due
to the strong transverse flow which shares similarities with the Hubble flow [85].
Hence, in both the Big Bang and heavy-ion collisions, the observed momentum
spectra contain thermal-physics modified by collective dynamics. Another analogy
is that the microwave background radiation decoupled long after the nucleosynthesis
took place. This resembles the situation with the two freeze-outs discussed above.
The analogies outlined above are used sometimes to justify the name Little Bang
for the process of the production of hot and dense matter in the ultra-relativistic
heavy-ion collisions. This name is attractive but when we use it we should keep in
mind that the two processes have also different aspects. For example, due to the
gravitational attractive forces the expansion of the Universe is slower [86].

4.6 Hanbury Brown — Twiss interferometry

The radar technology developed during the Second World War initiated the field
of radio astronomy. In the 1950s Hanbury Brown and Twiss showed that it was
possible to determine the angular sizes of astronomical radio sources and stars from
the correlations of signal intensities, rather than amplitudes. A similar idea was later
used in the particle and nuclear physics, making possible to gain information about
the spacetime geometry of the collision region [87-90] (for review papers see [91-96]).
In spite of the differences in the astronomical and high-energy measurements, the
studies of the emission regions formed in hadronic/nuclear interactions have become
known as the HBT interferometry (more recently, the name femtoscopy is used).
To some extent, the results of the HBT analysis are model dependent. The
physical significance of the measured quantities, such as the system size or lifetime,
relies on the theoretical input used to interpret the data. This point will be clar-
ified later in Chap. 17, where the most popular approaches of modeling the HBT
correlations are presented. At the moment, we may only emphasize that the HBT
interferometry measures the range of the correlations rather than the actual size of
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the system. In any case, the comparison of the HBT data with model predictions
restricts the class of the realistic models. In this Section we introduce the basic
concepts and terminology used in the HBT technique. This will allow us to present
and discuss the most recent HBT data coming from RHIC and the SPS.

The fundamental object in the HBT interferometry is the two-particle corre-
lation function C(pi,p2), measured for pairs of identical particles such as 7+ 7™,
7~ ,or KTK7. In general, it is defined by the expression [97]

_ Pa(p1,P2)
C(ply pZ) - Pl (pl)Pl (p2) ’ (45)

where P, (p) is the invariant inclusive one-particle distribution function in the space
of rapidity and transverse-momentum,

dN dN
Y Mk 4.
Pl (p) D d3p dyd2pj_ ’ ‘ ( 6)
and Pz (p1, p2) is the analogous two-particle distribution
dN “dN wn

=FE,F = .
P2(p17 P2) p1Lp2 d3p1vd3p2 dY1d2p1_LdY2d2p2J.

Equations (4.6) and (4.7) imply that the correlation function (4.5) transforms like
a Lorentz scalar. . ‘ : ‘

The distributions of pairs, Pa(p1, p2), and single particles, P;(p), are obtained
by measuring the particles in each event and then by calculating the average over
an ensemble of events. This procedure means that the correlation function (4.5)
may be expressed by the inclusive cross sections

do.incl ( 1 db’ind 1 da.incl)
C =— | — . 4.8
(P1, P2) Otot d31?1 d3py’ \ Ttot d3p1 Otor dPp2 (48)
For a general discussion of the inciusive measurements we refer to Sec. 30.5.
In Eq. (4.5) we may change variables and use the average momentum
-1
k=3 (p1+Pp2), (4.9)
and the difference of the two momenta |
q=Pp1— P2 (4.10)



86 PHENOMENOLOGY OF ULTRA-RELATIVISTIC HEAVY-ION COLLISIONS
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y = side

X = out

z=long
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Fig. 4.6 The out-side-long coordinate system used in the standard HBT analysis of the correlation
functions. The vector k lies in the z— 2 plane. By making the Lorentz boost along the collision axis
we may also set kj = 0. In this way we change to the special frame that is called the longitudinally
comoving system (LCMS).

In this way, we introduce the correlation function depending on k and q 8

C(k+q/2,k—q/2) > C(k,q). (4.11)
As q becomes very large (for a fixed value of k), the correlation between particles
is lost and the function C(k,q) approaches unity. On the other hand, at small
momentum differences the correlation function should tend to 2, due to the Bose-
Einstein interference of non-interacting particles emitted from a perfectly chaotic
source, see Sec. 17.1.3. The characteristic falloff of the correlation function with
increasing values of |q| gives hints about the size of the emitting source at the
time when the observed particles no longer interact with other particles, i.e., at the
thermal freeze-out. This is why we discuss the HBT interferometry in the end of
the Chapter describing the spacetime evolution of matter.

Clearly, the direction of the vector q is important in the analysis of the cor-
relation functions, since the system may have different characteristics in different
directions. Following Bertsch and Pratt, in most of the HBT measurements one
uses special coordinates. They are determined in a Cartesian frame with the z axis
along the collision axis (the so called longitudinal or long axis), and with two other
axes defined separately for each pair: the x axis is parallel to k| (the so called out
axis), whereas the y axis is perpendicular to both the longitudinal and out axes
(the so called side axis), see Fig. 4.6.

8For simplicity of notation we keep the same letter to denote the correlation function depending
on k and q.
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Fig. 4.7 Pion HBT radii vs. mg = \/k% + m2 measured by the STAR Collaboration at midra-

pidity in six different centrality windows. Reprinted figure with permission from [98]. Copyright
(2009) by the American Physical Society.

For boost-invariant and cylindrically symmetric systems the correlation function
may depend only on the value of k; and three values of the relative momentum,
9 = (Qout, Gside, Qlong)- In this case (with the Coulomb interaction removed) we may
parameterize the correlation function in the following way,

C(k_La q) =1+ Aexp [_Rlzong(kJ—)QIzong - Rgut(kl)qgut - Rgide(kl)qgide] ’ (412)

where the quantities Rout, Rside and Riong are called commonly the HBT radii, while
A is the intercept parameter.

For systems which are cylindrically asymmetric one should use a more gen-
eral parameterizations than that given by Eq. (4.12). In this case we talk about
azimuthally sensitive. HBT interferometry (azHBT) [99,100]. The latter brings in
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Fig. 4.8 Energy dependence of the pion HBT parameters for central Au+Au, Pb+Pb, and Pb+Au
collisions at midrapidity and k; = 0.2 GeV. The figure shows the compilations of the results
obtained by NA44, NA49, CERES, PHENIX, PHOBOS and STAR Collaborations. Reprinted
figure with permission from [98]. Copyright (2009) by the American Physical Society.

information about the dependence of shape and flow on the azimuthal angle ¢. This
information is complementary to the data on the transverse-momentum elliptic flow
coeflicient vs.

The examples of the experimental data showing the pion HBT radii measured
at midrapidity (where k| ~ 0) and averaged over the azimuthal angle are shown
in Figs. 4.7 and 4.8. Two remarkable features of these data are that the ratio
Rout/Rside is close to unity and the radii exhibit weak energy dependence. We
shall come back to the discussion of the issues related to the HBT measurements in
Chaps. 17 and 22.
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Chapter 5

More about Quarks and Gluons

This Chapter introduces more information about the formal aspects of quantum
chromodynamics (QCD) . After short remarks of Sec. 5.1, where we present the
historical development of the concept of a color charge as the source of strong inter-
actions, the QCD Lagrangian and the phenomenon of asymptotic freedom is intro-
duced in Sec. 5.2. The idea of the asymptotic freedom is then used in Sec. 5.3 as the
motivation to consider in more detail the equation of state of the weakly-interacting
quark-gluon plasma (WQGP) — a practically non-interacting gas of quarks and
gluons 1.

In realistic situations one has to consider the case where the strong coupling
constant remains large and the only way to establish the thermodynamic properties
of the strongly interacting quark-gluon system is via the lattice simulations of QCD
that are characterized in Sec. 5.4. Such simulations are based on first principles
and deliver the most advanced information about the phase diagram of the strongly-
interacting matter. They predict the existence of a phase transition from the hadron
gas to the quark-gluon plasma, however, the order of the phase transition depends
on the number of quark flavors, the quark masses, and the value of the baryon
chemical potential up. For three quark flavors with realistic masses and pue =0,
the crossover phase transition rather than a genuine phase transition is found. This
means that the values of the thermodynamic parameters change very abruptly in the
narrow range of the temperature, however, no real discontinuities in the behavior
of thermodynamic quantities are observed.

The Chapter is closed with Sec. 5.5 describing a special “rearrangement” of
the standard eight gluonic fields. Two of them are treated as the neutral fields,

1n the introductory sections we have argued that the successes of the perfect-fluid hydrodynamics
applied to ultra-relativistic heavy-ion collisions indicate that the plasma studied at RHIC behaves
like a strongly-interacting system. However, there are still approaches where the plasma, is treated
as a weakly-interacting system, see our discussion of the early thermalization problem in Sec. 4.2.
Thus, the strength of the interactions in the plasma created in the laboratory conditions is the
question under debate. In any case, the asymptotic limit where the plasma is treated as an ideal
gas rather than as a perfect fluid is a convenient reference point for many calculations. It is also
conceivable that the chances for the creation of the weakly-interacting plasma in the laboratory
grow with the increasing beam energies.
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while the remaining six ones are combined together to form the three charged gluon
fields. The quarks and charged gluons couple to the neutral gluons in the very
similar way as the electrically charged particles couple to the electromagnetic field
(of course, in addition there exist interactions between charged quarks and gluons).
Such a choice of the basis in the color space emphasizes similarities to quantum
electrodynamics. It is used in Chap. 11 where different processes are treated in the
abelian approrimation.

5.1 Color

In the early days of the quark model of hadrons it was realized that there were
difficulties connected with the Pauli principle for quarks. There exist baryons such
as, e.g., ATT, A~ or Q~, which have spin 3 /2 and consist of three quarks of the same
flavor: wuu,ddd and sss, respectively. In this case, all quarks have the same spin
orientation and identical coordinate wave functions. In order to avoid the conflict
with the Pauli principle, it was assumed that there exists a quantum number called
color. The three different states of color are usually called: red, green and blue. The
concept of color was introduced by Greenberg in 1964 and, independently, by Han
and Nambu in 1965 [1,2]. The further direct experimental evidence for color came
from the measurements of the e*e~ annihilations and the 7° — ~yv decays.

Color is the source of the force which holds quarks together in hadrons. In some
respect, it resembles ordinary electric charge being the source of electromagnetic
interactions described by Quantum Electrodynamics (QED). For example, positive
and negative color charges of the same kind attract each other forming mesons.
On the other hand, three different colors can also attract each other. In this case
baryons are formed. This phenomenon has of course no analog in QED. Both mesons
and baryons are color-neutral objects as a whole, similarly as atoms consisting of
negatively charged electrons and a positively charged nucleus are electrically neutral.
Colloquially, we describe baryons and mesons as white objects.. This terminology
is, of course,; based on the analogy with the way all real colors are made up of three
primary colors. As each fundamental force in Nature, the color force is mediated
by the exchange of some sort of quanta. In the case of QCD, they are called gluons
(since they glue quarks together). There are eight types of gluons, which is a
consequence of the fact that QCD is a gauge theory based on the SU(3) color group.

5.2 Gauge symmetry

The QCD Lagrangian has the form

Ny
1 v — . a A?
L=-; SOFLEM 4+ Ty (w“au - AT - mf) Ty, (5.1)
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where Wy are the quark fields (f = u,d, s, c, b, ¢ is the quark flavor index) and AL
are the gluon fields (a = 1, ...,8 is the color index). In Eq. (5.1), the quantity g is

the strong coupling constant, v* are the Dirac matrices, and A* are the Gell-Mann
matrices:

010 030 1 00
M=[100], XM=[7o00], A= 0-10|,
000 0 00 0 00
001 00 —i
M=1o000]), X=|00 0],
100/ i0 0
(000 - /00 0
M=(o01]), AN=[00-i],
010 , 0i 0
10 0
V3X=1[01 0]. (5.2)
00 -2

The Gell-Mann matrices (divided by a factor of two) are the generators of the SU(3)
group. They satisfy the commutation relations

Ao A . A '
[—2'a ?b] = 'Lfabc_c, (53)

which define the Lie algebra of the SU(3) group (from now on we use the conven-
tion that the symbols of sums over repeated color indices may be omitted). The
coefficients f,5. are called the structure constants of the Lie algebra. They are
totally antisymmetric symbols with respect to the permutation of the indices abe.
Different from zero coefficients of the SU(3) group have the following values:

1 1 1 1
123 _ 147 _ L 156 _ _ 1 246 _ 2 257 _ 1
fR=1 =g, e g e, o
1 1 V3 V3
345 _ 1 367 _ _ 1 458 _ 678 _ _ )
The non-linear gluon field strength in Eq. (5.1) is defined by the expression
" = 0"AL — 0" AR — g fapc AL AC. (5.5)

For fixed flavor, the quark wave function has three components (each of them is a

Dirac bispinor)
. 'wred
U = | green (5.6)
d’blue



98 PHENOMENOLOGY OF ULTRA-RELATIVISTIC HEAVY-ION COLLISIONS

and the local SU(3) gauge transformations have the form

U ¥ =U(x)7, U(z) € SU(3). (6.7)
It is important to remember that for local transformations the matrices U depend on
the spacetime position z. Lagrangian (5.1) remains invariant under transformations
(5.7) if, at the same time, the gluon fields change according to the rule

A — A#ﬁ AP U@AT @) - U@ ) (5.8)

Derivation of this fact is the subject of Ex. 7.12.
QCD predicts weakening of the strong interaction at short distances or high mo-
menta (the phenomenon called asymptotic freedom) and ylelds the running coupling

constant
167 2 Q% -0

2/2
SO S I W@ ) 59
with the QCD scale parameter Aqcp of about 200 MeV 2, The vanishing of the
QCD coupling constant at short distances implies that the interactions of quarks
and gluons are negligible in the limit of very high temperature [3-5], which supports
the concept of creation of the practically non-interacting quark-gluon plasma at
extreme, perhaps “cosmological” temperatures [6] >.

5.3 Equation of state of weakly-interacting quark-gluon plasma

Suppose that the interactions in the quark-gluon plasma may be indeed neglected.
At the temperature T and quark baryon chemical potential y, the energy densities
and pressures of gluons, massless quarks and antiquarks are given by the following
expressions 4
1
4
= 16%:—[‘ Pg = 569, (510)
T 1 1
7=6N T 72
Eqt+Eg f(120 +4u +82u

Pq+P’q=§(€q+€7j). (511)
We note that the quark baryon chemical potential p is one third of the baryon

chemical potential pp,
1
p= LB (5.12)

The factor Ny may be taken here as the number of flavors which are effectively
massless at a given temperature (for 7' < 200 MeV one may take Ny = 2, and for
the temperature range 200 MeV < T' < 1 GeV, where the strange quark can be
considered light, Ny = 3).

2The generally adopted convention is to define the value of 9(Q?) at the mass of the Z9 boson.
With as(m$) = g2(m%)/4r = 0.118 one finds Aqcp = 217 MeV.

3The situation at high baryon density and low temperature is different because the Pauli principle

forbids most scattering processes among quarks, except for those near the Fermi surface [7.
4The necessary integrals are elaborated in Secs. 8.7.2 and 8.7.3.
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Fig. 5.1 (a) Pressure, (b) energy density, and (c) entropy density of the massless pion gas
(dashed lines) and of the weakly interacting quark-gluon plasma (solid lines) as calculated
from Eqs. (5.10)~(5.15) with Ny = 2, 4 = 0, and B4 = 200 MeV. These parameters
give the critical temperature T. ~ 144 MeV and the corresponding critical energy den-
sity ec = 0.85 GeV/fm®. The part (d) displays the effect of the finite coupling constant,
as = g2 /4w, on the energy density of the plasma (in the leading order of the perturbative
expansion given by Eq. (5.16)).
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Before Egs. (5.10) and (5.11) can be used to obtain other thermodynamic quan-
tities of interest, one important effect has to be taken into aCcéunt. Free quarks and
gluons can only propagate if the trué QCD vacuum state is destroyed and replaced
by the perturbative vacuum. Such a modification of the ground state costs certain
amount of energy per unit volume, quantitatively expressed by the MIT-bag con-
stant B ~ (150MeV — 200MeV)4. With this remark in mind, the equation of state
of the weakly-interacting quark-gluon plasma can be written in the form

€agp = €¢(T) + (T, ) +€5(T, ) + B (5.13)
or .

Pugp = Py(T) + Py(T, 1) + Pg(T, ) — B, (5.14)
where the partial pressure of gluons and quarks can be calculated directly from
Egs. (5.10) and (5.11). The negative sign of B in (5.14) is a consequence of the
thermodynamic relations (see Eq. (5.19) below). It can be understood as a signal
of the instability of the perturbative vacuum. The latter collapses unless it is
supported by the high enough pressure of partons. More information about the
physical significance of the bag constant may be found in the original paper about
the Bag model of hadrons [8].

A lower limit of stability of the plasma is obtained by condition Pyg, = 0.
More realistically, the plasma phase becomes unstable against formation of a gas of
hadrons when its pressure is equal to that of a hadron gas at the same temperature
and chemical potential. In order to gain simple quantitative results, we can restrict
ourselves to the baryon-free case (u = 0) and assume that hadronic matter is rep-
resented by a gas of massless, noninteracting pions characterized by the following
equation of state » ‘ )

er =3 -7?:—0 T, Py = %sﬁ. (5.15)
Thermodynamical stability requires that the phase with the larger pressure dom-

inates, and phase equilibrium is achieved when Pggp(T;) = Pr(Tc), with T¢ being
the critical temperature (the Maxwell construction). For Ny = 2 this simple model
predicts a first-order phase transition at T, ~ 0.72 B i (T =~ 144 MeV for Bi = 200
MeV, e, ~ 0.85 GeV/fm3, see Fig. 5.1).

Certainly, the model of the phase transition described above is oversimplified.
One way of its improvement is to consider more hadrons (in addition to pions) and to
include the interactions between quarks and gluons. In‘the first-order perturbation
theory (Nf = 2, as = g2/4m), the modification of the plasma equation of state is [9]

' 15\ 8x%,_, 50 ™, '
Eqgp = (1 — EOZS) -15—T + (1 — mas) WT (516)
2
+ (1 - zas) %#2 (71’2T2 + ,u_) + B.
0 s 2

One can see that such perturbative interactions lead to a reduction of the energy
density and pressure. More on this subject may be found in the review article [10].
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5.4 Lattice QCD

The fundamental predictions concerning the QCD phase transitions can be obtained
from the numerical studies of QCD on a discretized spacetime lattice [11, 12]. In
this approach one calculates the partition function by the Monte-Carlo methods.
We recall that the grand canonical partition function is defined by the relation

Z =Tr [exp (—I:I—_;B—MB->J =exp <_¥_) , (56.17)

where H is the Hamiltonian, Np is the baryon number operator, T is the temper-
ature and pp is the baryon chemical potential (as usual we use the natural system
of units where #i = ¢ = kg = 1). From this expression all other standard thermody-
namic quantities (pressure, baryon number, entropy and energy) can be determined
from the relations:

oQ , o0 i o0
P=—|_— , Ng=— | =— , S=—( = 5.18
<6V>T,p3 i (6MB>T,V (BT) Vs ( )

E=TS—PV+ugNg. = (5.19)

and

The partition functlon (5.17) for pup = 0 is equivalently glven by the path 1ntegral

_ YT _
- / dAdV d¥ exp (— / 3z / dTE(A,\I/,\I/)). (5.20)
14 0

Here the spatial integration is done over the volume V, while the time coordinate
20 is “Wick rotated” to purely imaginary values, 7 = iz° , and the integration
range of 7 is determined by the temperature of the system. The bosonic gluon
(fermionic quark) fields have to be periodic (antiperiodic) functions of 7 in the
interval 0 <7 < f=1/T.

In principle, the technique used in the lattice approach should accurately de-
scribe the quark-gluon plasma as well as the hadronic phase but, in practice, its
accuracy especially at low temperature is severely limited by the finite size effects
and other technical difficulties. In particular, the calculations involving fermions
on the lattice are much more time consuming, hence the numerical results are less
statistically meaningful in this case. ~

We shall not enter a deeper discussion of the lattlce QCD methods because for
our purposes it is important to know merely the main results of such studies. Such
results may be directly applied in different phenomenological approaches. Thus, in
the next two sections we shall review the main facts delivered by the lattice QCD
simulations about the equation of state of strongly interacting matter. The reader

interested in more formal aspects of the lattice QCD may consult, for example,
Ref. [13]. : :
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<«— second order
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¢ tri y2 ’ .
mg crossover region

first order

my, mq

Fig. 5.2 Dependence of the critical behavior in QCD on the values of the quark masses
is represented by the diagram popularly known as the “Columbia plot” [14], see also [15].
This diagram summarizes our expectations on the nature of the transition that have been
derived from studies of simpler systems with the same global symmetries as QCD.

5.4.1 Order of phase transition at ugp =0

The results of the lattice QCD simulations concerning the order of the phase tran-
sition depend strongly on the number of quark flavors and on the quark masses.
For vanishing baryon chemical potential, ug = 0, those results are summarized
in Fig. 5.2. In the limit m,,mg,ms — oo one recovers the pure SU(3) gauge
theory with a deconfinement phase transition that is first order. In the limit
My, Mg, ms — 0 one deals with a chiral phase transition that is again first or-
der. For m, = mgq = 0 and m, larger than the tricritical point mgri the transition
is of second order. The “physical point” corresponds to small m, and mg4, while
ms > mt [16]. According to our current best knowledge, this point corresponds to
the crossover transition, where a sudden but continuous jump in the energy density
is observed. This jump in the energy density appears together with a more gradual
increase of pressure.

As an example, in Fig. 5.3 we show the results of the lattice simulations of QCD
at the finite temperature obtained in Ref. [17]. They were obtained for physical
masses of the light quarks and the strange quark. Those results have been recently
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Fig. 5.3 Thermodynamic variables obtained from the lattice simulations of QCD: The dots
represent the temperature dependence of pressure calculated in [17]. The quantity N; is
the number of the time points on the grid used in the calculations, and Psp is the Stefan-
Boltzmann limit for pressure — the result obtained for the weakly-interacting plasma, see
Eq. (8.86) which for Ny = 3 gives P/T* = 5.2. The solid line is the fit to the lattice
results [17] based on Eq. (5.21). The dashed line shows the corresponding temperature
dependence of the energy density (scaled by the corresponding Stefan-Boltzmann limit for
the energy density, epp = 3Psg). The value of the critical temperature Tc = 173 MeV.

parameterized in Ref. [18] with the help of the compact expression

l+e % _
— —e Az

e (5.21)

P= CT4f (TC/T) 5 f((ll)

where the dimensionless fit parameters equal: a = 0.91, b = 0.11, ¢ = 5.2 and
A = 1.08. The fit results are represented by the solid line in Fig. 5.3.

Indeed, with realistic parameters, as those used in [17], a smooth crossover is
found. This means that no genuine phase transition is observed (no real discontinu-
ity in thermodynamic variables exists) but a rapid change over a small temperature
range is found. Moreover, the pressure attains the black-body limit at larger temper-
atures slower than the energy density. This indicates that non perturbative effects
are present in the plasma. Those non perturbative effects are not completely un-
derstood. Their existence indicates that the treatment of the plasma as a massless
gas of non interacting partons is only a crude approximation.

Since we deal with the crossover rather than with the genuine phase transi-
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tion, the strict meaning of the critical temperature is lost. However, its concept
is still used to denote the position of the temperature range where thermody-
namic variables exhibit strong variations. In the lattice calculations discussed here
T. =173 MeV.

5.4.2 Critical point

Lattice simulations of QCD at finite chemical potential are much more difficult than
those performed at zero value of pp. The reason for this difficulty is the appearance
of the complex fermionic determinant in the path integral approach. This leads
to considerable cancellations between different field configurations and unstable
numerical results. Several methods have been proposed to deal with this problem.
For example, it has been suggested to expand the fermionic determinant into a
Taylor series and to calculate the expansion coefficient at up = 0 [19]. Another way
is to introduce the purely imaginary chemical potential up = —i|pp| [20,21]. In this
case the fermionic determinant is real, however, at the end of the calculations one
has to perform the analytic continuation back to the real values of up. Yet another
procedure is called the reweighting method [22,23]. In this case the fermionic
determinant at non-zero up is treated as an observable rather than as a part of the
integration measure.

The recent results [24] indicate that the crossover transition extends to the
critical point (T, uZ;;), see Fig. 1.3 where the critical point is denoted as CP.
At this point the transition is of the second order. For smaller temperatures and
larger chemical potentials, we deal with the first order transition. From the model
calculations, we expect that the line of the first-order transition ends at the pp-axis.

The experimental studies of the QCD phase diagram over an extended region of
high baryon density will be the subject of the next heavy-ion experiments: FAIR
at GSI Darmstadt [25] and SHINE/NA61 at CERN [26]. The main aim of these
experiments is the location of the critical point and searches for the first-order phase
transition in QCD at finite baryon density. Of course, the experimental studies of
new regions in the QCD phase diagram requires that new theoretical tools, for
example, special hydrodynamic codes [27], are developed in parallel.

5.5 Color isotopic charge and color hypercharge

In this Section we come back to the formal aspects of QCD discussed at the begin-
ning of this Chapter in Sec. 5.2. We shall introduce a special basis for the gluon
fields, which makes a relation between QCD and QED especially transparent. In
this basis the two real gluon fields behave like the neutral fields, whereas the re-
maining six real gluon fields are grouped into three complex fields describing the
charged gluon fields. Both quarks and charged gluons carry two types of the color
charge: the color isotopic charge and color hypercharge. These two charges describe
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their coupling to the two neutral gluon fields in the similar way as the electric charge
describes the coupling of the charged electron to the neutral electromagnetic field.
The use of such basis turned out to be very convenient in the construction of the
kinetic equations for the quark-gluon plasma, see Chap. 11.

5.5.1 Quarks

Out of eight generators of the SU(3) group, there are only two which commute with
each other, namely

L 1 00 L% 1 (Lo
T¢=F=5|0-10], T* =2 =75|01 0] 62
0 00 | 00 -2

These two generators may be interpreted as the operators of the color charges
carried by the quarks. Following Ref. [28] we shall call them the color isotopic
charge and the color hypercharge. The values of the quarks charges are obtained
as the eigenvalues e(s) and 6(8) in the equations

T30, =P v, T3y, =5y, (5.23)

where the field ¥; has only its ith component different from zero:

‘Ilred 0 0
Uy={ 0 |, Yo=|Tpen |, Ts=[ 0 |. (5.24)
0 0 ‘Ilblue

The solution of Egs. (5.23) is

el=%<1,\/§>, 52=%<—1,\/§>, e3=(0,%\/§), (5.25;

where we introduced the notation based on the two-dimensional vectors in the space
of the color isotopic charge and color hypercharge

€ = (ez(.?'), Q(s)) . (5.26)

We note that the vectors €; may be treated as the mathematical representation

of three different (red, green, and blue) color charges. Each charge €; carried by a

quark has its opposite partner —e; carried by an antiquark, so a quark-antiquark

pair is neutral or white. Moreover, the sum of the three charges (5.25) is also

zero, €1 + €2 + €3 = 0, hence three quarks or three antiquarks may also form a
neutral /white object.
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5.5.2 Gluons

The color isotopic charge and hypercharge are also carried by the gluons. However,
in this case we have to consider the charge operators in a different space. The gluon
fields, represented by the objects

Ak = %A{;Aa, (5.27)

do not form the set of base states for the fundamental representation of SU(3)
as quarks but form the basis for the adjoint representation 5. The action of the
appropriate charge operators on the gluon fields is defined by the calculation of the
commutators of the generators T3 and T'® with those fields [29],

AAT3=[T3, -], AdT®=[T8%,-]. (5.28)

One immediately finds that the generators 73 = T2 and 75 = T'® are the eigenstates
of the new operators AdT3 and AdT® with zero eigenvalues. Other non-trivial
eigenstates (712, 721,713, T31, T23, and 732) are defined by the relations:

010

Ti2 = 71—2"(T1 +ily) = '\}—5 ggg y T = %(Tl —ily) =1l (5.29)

7'13=—1-(T4—|-2'T5)=i gg(l) 7‘31=—1'~(T4—i'1-’1-’»)=7'T (5.30)
V2 V2 000 ) v2 . .

T23:i(T6+iT7)=L 882 i = —=(Ts —iTy) = iy (5.31)
V2 v2\000/ V2 v

Indeed, the straightforward calculation shows (¢,7 = 1,2;,3;¢ # j; no summation
over repeated indices)

[Ts,Tij] = ng)Tija [Tg,Tij] = ng)nj, (532)
where the charges 7;; have the form
Nij = € — €. (5.33)

Equation (5.33) reflects a quark-antiquark structure of a gluon. The three special

cases are
1 1 1 1
— 1,0 , — =, —= , = ——, = . 534
112 = (1,0) M3 (2 \/§) Ma3 (2 \/3) ( )

5In the discussion of the color charges of gluons we follow the lectures on the Standard Model by
Krzysztof Golec-Biernat, http://phoebe.ifj.edu.pl/ golec/czastki.pdf (in Polish).
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Fig. 5.4 Absorption of the charged gluon by a quark. The initial color charge €; is changed
to €;.

The remaining three charges are obtained from the rule

Nji = —Nij» (5.35)
which follows immediately from Eq. (5.33).
The gluon field (5.27) rewritten in the basis of the T generators (for simplicity
of notation with skipped Lorentz indices) has the form

A= %Aa)\a (5.36)
Al — A2 At — A5 A8 — A7

T12 + T13 + To3 + h.c.
72 12 /2 13 72 23 ]

= A37'3 + A8T8 + [

or

A= G3'r3 + GSTs + G127'12 + G137'13
+ G5 + GPry1 + Gy + G¥Prg. (5.37)

Here we made the following identifications:

G3 = A3, Gg = Ag, (538)

1 1 1 '
G2 = —= (A1 —i4y), Gi3 = — (44— iA , Gag = — (Ag — i47), 5.39
12 \/5( 1 lz) 13 \/5(4 Zs) 23 \/5( 6 — 1 7) ( )
Gu =G,  Gu=Gl;, Ga=0Gl,. (5.40)

Clearly, the fields G3 and G® are neutral since we have

[T3,G?
[T3,G®]

0, [T%,G
0, [T%GH

i

0
0. (5.41)
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On the other hand, the fields G¥ carry the color charges U (here againi,j = 1,2, 3;
i # j; no summation over repeated indices),

- i i N

[13,G%] =PG4, [T%G] = n®GH. (5.42)
In the new basis, the quark-gluon interaction term in the Lagrangian (5.1) takes
the form (neglecting the flavor indices)

Lint = “9W (TB’YuGg + 787MG§) v
—g [@(Tglef{l + 7317, Gh1 + 1327, Gh,) ¥ + h.c.] . (5.43)

Equation (5.43) shows that the color charge of a quark is not changed during the
interaction with the fields G® and G®. Hence, these two types of gluons may be
treated similarly as photons in QED. On the other hand, interaction of the quarks
with the gluon fields G¥ changes the color state of quarks: absorption of the gluon
G by a quark with the charge €; produces a quark with the charge €;, see Fig. 5.4.

In the end of our discussion we have to emphasize that the division of the gluon
field into the charged and neutral part is gauge dependent, i.e., it is not invariant
under transformations (5.7) and (5.8). Nevertheless, after fixing the gauge, the
method described above may be applied and it turns out to be very useful for the
physical interpretation of many processes.
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Chapter 6

More about Hadrons

In the following Chapter we provide more information about hadrons and their
thermodynamic properties. A short characteristics of the hadronic resonance states
is presented in Sec. 6.1. Then, in Sec. 6.2 we briefly review the statistical boot-
strap model. Nowadays, this model is of the historical importance mainly, however,
several significant concepts were conceived in its framework. They are still quite in-
teresting and remain lively discussed. For example, the statistical bootstrap model
leads to the concept of the limiting hadronic temperature, called also the Hagedorn
temperature. It also introduces the concept that hadrons form clusters which in
turn form heavier clusters etc.

At present, the Hagedorn temperature is commonly understood as the tem-
perature of the phase transition from the hadron gas to the quark-gluon plasma.
However, there exist new interesting developments concerning this idea and one of
them, concerning the differences in the mass spectrum of baryons and mesons, is
discussed in Sec. 6.3.

In the late stages of the spacetime evolution, the matter created in the relativistic
heavy-ion collisions is typically treated as an ezpanding hadron gas. Therefore, to
correctly describe the late stages it is very important to know the thermodynamic
properties of the system of hadrons. The theoretical description of the hadron
gas relies on the Dashen-Ma-Bernstein formalism which may be regarded as the
relativistic generalization of the wirial expansion. These formal frameworks are
discussed in Secs. 6.4 and 6.5.

Finally, in Sec. 6.6 we describe the construction of the realistic equation of state
of the strongly interacting matter that agrees with the hadron-gas model at low tem-
peratures and coincides with the lattice simulations of QCD at high temperatures.
This equation of state is valid for the case of zero baryon chemical potential and has
been successfully used in the hydrodynamic calculations describing the evolution of
matter created in heavy-ion collisions at the RHIC energies.

111
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6.1 Resonances

In the 1950s the known hadrons included: nucleons (protons and neutrons), pions,
hyperons (A, %,Z), and kaons. Meanwhile, the particle tables have become much
more longer and contain hundreds of hadronic species. For example, the statistical
hadronization models SHARE [1,2] and THERMINATOR (3], based on the Particle
Data Group publication [4], include 371 well established light-flavor states, i.e., the
hadrons composed of up, down, and strange quarks. The hadron list comprises 256
baryons and 115 mesons (counted with their isospin degeneracies but without the
spin degrees of freedom).

Most hadrons decay by strong interactions, so they do not live long enough to
be detected directly. They are identified through their decay products. The mass
of a decaying particle is equal to the total energy of the products measured in the
rest frame. According to the uncertainty principle connecting energy and time, the
short lifetime of a particle leads to the substantial uncertainty of its energy/mass
(of the order h/At). For example, the A-resonance is formed and decays in mIN
scattering (t N — A — m N). The decay of the A means that the normalization
of its wave function decreases exponentially

@) = ¢ (0)) e/, (6.1)
where
1

is called the lifetime of the state. Thus, the time dependence of the wave function
is of the form

P (t) ~ e M2, (6.3)

where M is the mass of the state (the energy in the rest frame). As a function of
the center-of-mass energy E of the 7N system, the state is described by the Fourier
transform

1

E)= t) e Ptdt v —————. 6.4
W) = [w e~ (64
The corresponding 7N reaction rate is, see Ex. 7.14,
2 1
[Y(E)" ~ (6.5)

(- M)+ (5)*

This function has a peak at M with a width determined by I'. Equation (6.5) is
called the Breit-Wigner resonance formula, and M and I' are known as the mass
and width of the unstable hadron called a resonance.

1]
c
t
r
r
3
r
t
s
T
c
t
1
t

-




al
le
1€
6
1e

o
ss
1e
1e
Ss

m

1)

3)
of

er

4

is
ss

More about Hadrons 113

6.2 Statistical bootstrap model

The statistical bootstrap model (SBM) [5-10] is a model of strong interactions based
on the observation that hadrons form bound and resonance states. This leads to
the concept of a possibly unlimited sequence of heavier and heavier bound and
resonance states, each being a possible constituent of a still heavier resonance. The
number of such states in the mass interval (m,m + dm) is denoted by p(m)dm,
and we call the function p(m) the SBM mass spectrum. The requirement that
resonances are formed from other resonances in the self-consistent manner leads
to the bootstrap condition or bootstrap equation for the mass spectrum p(m). The
solution of the bootstrap equation shows that the mass spectrum for large masses
m has to grow exponentially, as found by Hagedorn already in 1965 [5]. As a
consequence, any thermodynamics employing this mass spectrum has a singular
temperature Ty generated by the asymptotics p(m) ~ exp(m/Tq). At present
Tu (the Hagedorn temperature) is interpreted as the temperature where the phase
transition from the hadron gas to the quark-gluon plasma occurs [11].

We can illustrate the ideas described above with the help of a simple toy model
in which clusters are composed of resonances with vanishing kinetic energy. In this
case we write

o0 1 n n
p(m) = §(m — mg) + Zz — /6(m - z;mi) I_Ilp(mi) dm,;. (6.6)
n= 1= 1=
The Laplace transform of Eq. (6.6) is

| ptm)expl=pm) dm = expl~mo] + 3 =TT [ otmi) expl-pmildmi. (6.7
n=2 " i=1

Now we define

z(B) = exp[—LPmyo] (6.8)
and
Glz) = / exp|—Bm]p(m) dm. 6.9)
Thus, the bootstrap equation (6.6) takes the form
z =2G(z) — exp[G(2)] + 1. (6.10)
Differentiation of Eq. (6.10) gives
1=2G'(z) — exp[G(2)]G'(2) = 2G'(2) — (2G(2) + 1 — 2) G'(2), (6.11)
or
1=G(2)(1+2-2G(2)). (6.12)

Most easily this equation can be solved by the substitution of a series in the
form

G(z) = ch 2", (6.13)
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One can check that the coefficients c, satisfy the following recurrent relation

1 n
Cntl = n—+1 <—n Cn+2 Z m Cm Cn+1—m) . (6'14)

m=1
A straightforward numerical study of the radius of convergence of the series (6.13)
with the coefficients (6.14) shows that |z| must be smaller than 2z ~ 0.386. In
connection with Egs. (6.7) and (6.8), the finite radius of convergence means that
there is a limiting temperature for the system of hadrons

1 1 0.95
— = — )1 N —. 6.15
e () mw ~ (6.15)
Putting mo = m, we find the value
Ty = 145 MeV, (6.16)

which can be interpreted as the temperature of the phase transition [11]. We note
that in the analytic treatment of Eq. (6.10) we first construct the function z(G),
see [12]. The parabola-like maximum of z(G) implies a branch cut singularity of
G(z) starting at zg = In4 — 1 ~ 0.386. This singularity leads, through the inverse
Laplace transform, to the exponential mass spectrum p(m) ~ exp(m/TH).

Coming back to Egs. (6.8) and (6.13) we find

G(z) = Z ¢ exp [—Bnmyg] (6.17)
and

p(m) = ch 8 (nmo —m) . (6.18)

Hence, in the toy model discussed here the masses of the clusters are multiples
of the pion mass. Certainly, this is not a realistic case. To deal with this and
other problems, more elaborate versions of the bootstrap model were developed and
analyzed. In particular, such modifications included: a larger number of “input”
particles, the full relativistic phase space, symmetry constraints, baryon number
(strangeness) conservation, and finite particle volumes.

6.3 Hagedorn temperatures for mesons and baryons

Nowadays, SBM as one of many pre-QCD approaches does not play an important
role. At the same time when SBM was being developed, the quarks and gluons were
discovered and accepted as the building blocks of matter. Nevertheless, the SBM
prediction of the exponential grow of the hadron mass spectrum still attracts a lot
of attention. Speaking more quantitatively, SBM predicts the asymptotic behavior
of the density of hadron states in a form

p(m) = cm®exp [m/Ty], (6.19)
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where a is a negative power (a < —5/2 [5,6], or a < —3 [7]). The parameters of the
asymptotic spectrum should be determined from the fits to the experimental mass
spectra. Hagedorn and Ranft [6] fit the function

pHR(m) = ( ¢ (2))5/4 exp(m/TH), (6.20)

m2 +m,
with mo=0.5 GeV, and got Ta= 160 MeV. A similar value for Ty was obtained by
Frautschi.

Starting from the 1960s, it has been believed that there is one universal scale
in the asymptotic spectrum of hadrons, and its value is about 160 MeV. However,
the old fits had a rather poor spectrum to their disposal, sufficiently dense only
in the range of masses up to 1 GeV. Meanwhile, the particle tables became more
complete [4]. Quite recently, a new analysis [13,14] of the hadron states [4] showed
that the Hagedorn temperatures of mesons and baryons are significantly different.
Both the meson and baryon spectra increase exponentially up to 1.8 GeV, however
the baryon spectrum grows much more rapidly. Application of the form (6.20) with
mo = 500 MeV gives: Tieson = 197 MeV and Tharyon = 141 MeV, see Fig. 6.1
where the cumulants of the meson and baryon experimental mass spectra and the
fits based on Eq. (6.20) are shown. Note, that the cumulants give the number of

2.5 mesons

‘Zﬁ—' Zf' 15 2 2.5 nleevl
0.5

Fig. 6.1 Cumulants of the meson and baryon experimental mass spectra and the fits
based on Eq. (6.20), plotted as functions of mass. Reprinted from [13] with permission
from Elsevier.
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states with the mass smaller than m, namely
m

N(m) = / dm! p(m!). (6.21)
0

A challenge remains to explain the different behavior of mesonic and baryonic
spectra. First of all, the models with a finite number of degrees of freedom are not
capable of reproducing the exponentially rising spectrum. On the other hand, the
models which do reproduce the exponential grow, very often lead to the same rate
of the growth for mesons and baryons. In particular, this is the case of SBM where
baryons are formed by attaching mesons to the “input” baryon [8] and, as a result,
the baryon spectrum grows in the same way as the meson spectrum. An interesting
possibility of the explanation of the effect is offered by the Dual String Models. For
more discussion on this point we refer the reader to Refs. [13-15].

The flattening of the meson and baryon mass distributions above m = 2 GeV
reflects our poor knowledge of the resonance states in this region. In fact, such
states may exist and their inclusion may improve the exponential form of the mass
distributions. For example, it has been argued [16] that extra Hagedorn states
may contribute to fast chemical equilibration times of known baryons and kaons in
heavy-ion collisions studied at RHIC.

6.4 Dashen-Ma-Bernstein formalism

The formal treatment of the resonance states in a hadronic gas in thermal equi-
librium was elaborated by Dashen, Ma, and Bernstein [17], and by Dashen and
Rajaraman [18,19]. More recently, this issue was studied and further developed
by Weinhold, Friman, and Nérenberg [20-24] (see also [25-27]). The fundamen-
tal formula of this approach is the equation defining the number of resonances per
unit volume and per unit invariant mass, M, produced in the two-body channel of
particles 1 and 2

dn / &p 1 doia(M) 1 (6.22)
dM @2r)3n dM exp (@) 11

Here d12(M) is the phase shift for the scattering of particles 1 and 2, g is a spin-
isospin factor, T' is the temperature, and the + sign reflects the statistics of the
resonance (+1 for fermions and —1 for bosons).

The authors of Ref. [20] pointed out that in many works the spectral function
of the resonance is used as the weight in Eq. (6.22) instead of the derivative of the
phase shift. Such a procedure is acceptable for narrow resonances, since in this case
both the spectral function and the derivative of the phase shift are very sharply
peaked at the resonance position mg, yielding

| %@ ~ 76(M — mg). (6.23)
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In this situation one obtains the narrow-resonance limit -
d 1
(narrow) __ / p
n =g . (6.24)
27)3 2 152
It is important to emphasize that for wide resonances, or when the effects of tails are

investigated, the difference between the correct formula (6.22) and the approximate
formula (6.24) is important, not only conceptually but also numerically.

6.5 Virial expansion — non-relativistic treatment

Since the crucial role of the phase shifts in the theoretical treatment of interacting
gases is not always properly emphasized, in this Section we give a simple example
showing how the phase shifts allow us to determine most of the thermodynamic
properties of the non-relativistic and non-ideal gases. The physical intuition we
gain from this example may be directly applied to relativistic systems, such as the
hadron gas formed in relativistic heavy-ion collisions. We note that from the formal
point of view, we analyze the first term in the virial expansion, i.e., the expansion
of pressure in powers of 1/V. Our discussion is concentrated on the non-relativistic
gas of identical boson particles which undergo resonant scattering on each other.
We show that in some cases the interacting system behaves effectively as a non-
interacting gas which includes besides the input particles also resonant states as
separate degrees of freedom. Our discussion follows the treatment of this problem
by Landau and Lifshitz [28], however, several aspects are discussed in greater detail.

We start our discussion with the definition of the thermodynamic potential {2
which accounts only for one- and two-particle states

Q=-Th{l+ Z eW=B1n)/T 4. Ze@“ B2.n)/T (6.25)

The first sum is over one-partlcle energy levels, denoted as E1 n, while the second
sum is over two-particle levels, denoted as F2,. In the low-density (Boltzmann)
limit the chemical potential y is negative and its magnitude is large, hence the
logarithm in Eq. (6.25) may be approximated by the three terms

Q=_T {Z eW=Brn)/T 1§ o(u=Fan)/T
n n

_—% z e(l-‘»“El,n)/T Z e(u——ELm)/T} . (626)

n m
In the classical approximation, the summation over the states may be replaced by
the phase-space integrals. In this way we obtain

Q=-T {/chu (=B, a))/T %/drcl,ldrcl,Z eu—E(p1,91;p2,92))/T

B %/drcl,l e(lt—E(m,qx))/T/dI‘d,2 e(u~E(pz,q2))/T} , (6.27)
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where we use the notation

d*q1d°p1 dPgad®py
=2 g = ——22
bt (2rh)® o2 (2rh)®
and the factor 1/2 in the second term in Eq. (6.27) accounts for the proper counting

of identical particles. We further assume that the one-particle energies include only
the kinetic parts, T'(p1) = p?/(2m) and T(p2) = p2/(2m), while the two-particle

(6.28)

energies include also the interaction term U (g2 — q1) depending on the difference’

of the position coordinates. In this case we may write

T
e { gel;z/)f‘ [ et
Y[y

e2;L/T
. / ATy = TEHTE/T (~Ulanan)/T _ 1)} . (629

+

In the next step we introduce the center-of-mass and relative (internal) coordinates
defined by the equations

1
P = p1 + p2, P=3 (P1 —p2), (6.30)

Q=j@+aw), a=(a-a) (6:31)

The thermodynamic potential may be now rewritten in the following form

T
Q = —T { VCM/ /d3p1 e_T(pl)/T

(27h)®
+e2';/T / dT e T / dyeg e~ BT (e-U(q>/T - 1)} (6.32)
where we introduced the integration measures
dl'q = M?,B, ol = (F»_Mii_g (6.33)
(2mh) (27h)

One observes that the second term in Eq. (6.32) becomes a product of two partition
functions, the first factor describes free particles with the mass 2m, and the second
factor describes the particles with the reduced mass m/2, which interact via the
central potential U. We define now the interacting partition function

_ 1 2 (U7
Z2—2/d'ycle T(e —1)

1 p2 1 p?
= 5/(1%16_%‘2’%‘) — §/d'ycle_7n_T (6.34)

and come back to the quantum description. In the quantum approach the states
in the central potential are labeled by the numbers n,! and m. Since the energy
levels are degenerate in m, it is enough to use n and I, and introduce the degeneracy
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factor 21 + 1. Hence, the partition function (6.34) may be expressed as a difference
of the two terms,

Zo=3 @+ e F -3 @+ 1)e (6.35)
n,l n,l

where the energies are given by the magnitude of the wave vectors

R2k(n, 1)

EO(n’l) = m

21.2
Rk (1) (6.36)
m

E(n,l) =

The factor 1/2 (appearing in front of the two sums in Eq. (6.34)) has been omitted
since in the quantum case the symmetry between particles should be taken into
account by the inclusion of the proper values of ! (in our case we deal with bosons
and we should include only even values of the orbital momentum). The subscript 0
denotes that the energy values Eg and the momenta kg are calculated for vanishing
value of the potential U. From the point of the mathematical manipulations it is
convenient to close the system in a large spherical box of radius R which may be
taken to be arbitrarily large. In the end of the calculations we may check that our
final result is independent of the specific choice of R. The asymptotic form of the
solutions of the Schrodinger equation with a given orbital momentum [/ has the form

b= sin (kr - %lw + 5,(k)) , (6.37)

where §; is the phase shift. By demanding that the wave function vanishes at the
edge of the box (for r = R) we find the condition

const.

kR — %lw +6(k) = . (6.38)

This is exactly the condition leading to the discrete energy values appearing in
Eq. (6.36). For non-interacting particles ¢; = 0 so that for fixed | we obtain

?dko — dn. (6.39)

On the other hand, for interacting particles we have

R db
( dk)dk dn. (6.40)

Changing from summation to integration in Eq. (6.35) and denoting ko in the second
term simply by k we obtain the formula

Zy = Z/ dk(R d5l)(2l+1)e ok
—Z/ el @1 +1) e~ 5F, (6.41)
1 70 4
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which leads to the concise result
Zy = Z @0+ 1) / a2 d‘” e (6.42)

where the dependence on the sphere radius R has been canceled !. Combining Egs.
(6.32) and (6.42) we find

Veu/T w2
ne {(27rh)3/d3ple o
2;1,/T

(2 h3 Z 2l+1)/d3Pe“%/0 dk% e“hz’%z}, (6.43)

The number of particles is obtained by differentiation of the potential  with respect
to the chemical potential and changing the sign, in this way we find

E eM/T d3 e_—z'%f—["
VvV - (2 h)3 D1
(2 o Z(2l+1)]d Pe” w/ dpwdp T (6.44)

We observe that the number density of particles has been changed from its nonin-
teracting density given by the first term in Eq. (6.44). The second term in (6.44)
gives a correction from the scattering states. Its interpretation is most clearly seen
in the case where the phase shift increases suddenly by =, in this case the derivative
of the phase shift becomes the delta function,

déy
61(p) = 70(p — —_— = - .
1(p) = 76(p — pr,1), wdp (p — pr,1), (6.45)
and the last integration in Eq. (6.44) can be done explicitly
N elut+m)/T —(m-!—%’i)%
— = ———/d3p16 ™

V. (2rh)?®
e2(p+m)/T

S

2 p2
P —— > (2+1) / #pe (i)t ~Th (6.46)
l

Here we have added and subtracted the rest mass energy in the arguments of
the exponentials trying to recover a form of the kinetic energy, which is the non-
relativistic expansion of the relativistic formula /m2 + p% ~ m + p?/(2m). In the

We note that for non-interacting system the summation range over ! is restricted by
Imax = 2kR/m. For the interacting system the sum over [ is naturally cut by the dynamic properties
of the two-particle system.
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non-relativistic regime we have Eg,; = p%, ,/m < m, hence the equivalent form of
Eq. (6.46) is (with a rescaled chemical potential p +m — p)

N eH/T 3 p?\ 1
Vo (27rh)3 P exp [— <m+ %> T]
@+1
271)3Z )
x/d3Pex —(@em+E )+—l—— z (6.47)
’ M aemEa)) T

Equation (6.47) has a very attractive physical interpretation. The particle num-
ber density is modified by the particles which form two-particle clusters or reso-
nances (hence the factor 2 in front of the second term). The mass of the clusters is
2m + Epg, ;. This is the sum of the masses of the input particles that has been mod-
ified by the interaction term. This is exactly what we expect in the non-relativistic
approximation. In addition we see that the clusters behave as particles with the
spin [.

The non-relativistic case discussed above illustrates how resonances appear in
the treatment of the interacting gas. Generalized to the relativistic systems, this
example shows how the thermodynamic system of interacting pions may be approx-
imated by the non-interacting gas of pions and all pion resonances. It is worth
emphasizing that in the case where the phase shifts have no sudden jump, the in-
tegration over the whole energy range should be done with the weight given by the
derivative of the phase shift in a given channel. Such expressions are the correct
thermodynamic formulas for inclusion of the resonances, which should be applied
especially in the cases where the resonances are broad.

6.6 EOS of strongly interacting matter

One of the ultimate aims of the physics of heavy-ion collisions is to extract the
information about the equation of state of strongly interacting matter [30]. Since
thermodynamic quantities characterizing hot and dense matter formed in the col-
lisions are not accessible in direct measurements, the standard procedure is to use
different forms of the equations of state in model calculations and to check which
form leads to the best description of the data. In this way we select the equations
of state that may be regarded as the realistic ones.

The successes of the thermal models indicate that for low temperatures, T < T,
the realistic equation of state of strongly interacting matter is reduced to the equa-
tion of state of the hadron gas. On the other hand, at high temperatures, T > T,
it should agree with the results of the lattice simulations of QCD. In the case of
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Fig. 6.2 Temperature dependence of the square of the sound velocity at zero baryon
density, ¢Z(T) = OP/d¢. The result of the lattice simulations of QCD [29] is represented
by the solid line, whereas the result obtained with the ideal hadron-gas model is represented
by the dashed line. A piece of the thick solid line shows the simplest interpolation between
those two calculations. In this case the critical temperature T¢ equals 170 MeV. It is defined
as the place where the sudden change of the thermodynamic variables occurs, see Fig. 6.3.

the vanishing baryon chemical potential, where the lattice calculations deliver the
most reliable results, such an equation of state was worked out in Ref. [31]. It was
successfully used in many hydrodynamic calculations.

The starting point for the construction of the equation state in [31] is the analysis
of the temperature dependence of the sound velocity. For zero baryon chemical
potential the sound velocity is defined by the formula

g=098_o0l
* 0 TOio
In Fig. 6.2 we show the sound velocity calculated in the hadron-gas model (dashed
line) and the sound velocity obtained from the lattice simulations of QCD (solid
line). The complete sound-velocity function is obtained in Ref. [31] by assuming
that those two results should be connected with the simple interpolating function
in the neighborhood of the critical temperature (the piece of the thick solid line).

Thermodynamic systems at pp = 0 are characterized by only one independent
thermodynamic variable, for example, the temperature T. This means that the
knowledge of the sound velocity as a function of 7' allows us to calculate other
thermodynamic variables. As the special case we may consider the entropy density
where

(6.48)

T U
o(Ty) = o(T}) exp [ /T %J . (6.49)

Here T7 and T are two values of the temperature. It is convenient to choose T} to
be sufficiently low, such that o(T1) corresponds to the entropy of the pion gas and
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1 .
% @ 160 = 0.6 GeV.fm™

e/ T

) ;
o ® le = 0.6 GeV-fm™
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Fig. 6.3 The energy and entropy densities, scaled by T* and T3, respectively, shown as
functions of the temperature. One observes a sudden but smooth change of £/T* and
o/T® at T ~ T.. The vertical line indicates the critical energy density corresponding to
T. = 170 MeV. With the considered equation of state one finds ec = 0.6 GeV/fm®. The
presented thermodynamic functions follow directly from the temperature-dependent sound
velocity shown in Fig. 6.2.

may be easily calculated (at low temperatures the pions give the main contributions
to the thermodynamic properties of the hadron gas).

The thermodynamic variables obtained from the sound velocity depicted in
Fig. 6.2 are shown in Figs. 6.3 and 6.4. In Fig. 6.3 we plot the energy and entropy
densities scaled by the appropriate powers of T. We observe sudden changes in the
behavior of the quantities /7% and ¢ /T2 in the vicinity of the critical temperature
T ~ Tg. This behavior reflects the presence of the crossover phase transition. '

Interestingly, the value of the critical energy density, . = 0.6 GeV/ fm3, is similar
to that obtained in the naive model of the phase transition discussed in Sec. 5.3,



124 PHENOMENOLOGY OF ULTRA-RELATIVISTIC HEAVY-ION COLLISIONS
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Fig. 6.4 The sound velocity and pressure shown as functions of the energy density. Nota-
tion the same as in Fig. 6.3.

see also Ex. 7.2. We note, however, that the behavior of the sound velocity shown
in Fig. 6.2 is quite different from the behavior expected during the first-order phase
transition. In the latter case, the changes of the pressure at the critical temperature
are zero. This implies that the sound velocity drops to zero at T = Tk.

In Fig. 6.4 we plot the sound velocity and pressure as the functions of the energy
density. One observes that the values of the sound velocity remain well below the
ideal-gas limit for massless particles, ¢ = 1/3, even at very high energy densities.
This behavior suggests that in the considered energy range the particle interactions
in the plasma are not negligible.

It is worth to emphasize that the equation of state introduced above is limited
to the case up = 0. We have discussed it in more detail, since it is used in the
hydrodynamic calculations presented in the next Chapters. The inclusion of the
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non zero baryon number density leads to rich structures in the phase diagram, for
example, see the review article [32].
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Chapter 7

Exercises to PART 1

Exercise 7.1. Natural system of units.

Given the Planck constant % = 6.58 ° 10~22 MeV s, the speed of light in vacuum
c=2.998-10% m/s, and the Boltzmann constant kg — 1.38 -10~16 erg/K (1 eV =
1.6 -10712 erg). i) What length is equivalent to 1 GeV in the natural system of
units where i = ¢ = kg = 1. Express your result in fm. ii) What temperature
(in K) is equivalent to 100 MeV? iii) Change the standard unit used for the cross
sections, 1 milibarn = 1 mb = 1073' m?, to fm?2. ‘

Answers:
1GeV = 5.07fm™!, (7.1)
100 MeV = 116 - 10'°K , (7.2)
10mb = 1fm?. (7.3)

Exercise 7.2. Energy density of normal nuclear matter.
Calculate the energy density of normal nuclear matter.

Answer: The easiest way is to use the value of the nuclear saturation density
po=0.17fm ™3 and to multiply it by the nucleon mass my = 940 MeV. This gives

€0 ~ 0.16 GeV/fm®. (7.4)
Find other ways of making this estimate.

Exercise 7.3. Kinetic energy of a truck.
The weight of a truck is 10 tons and it is moving at a speed of 100 km/h. Calculate
its kinetic energy in eV.

Exercise 7.4. Participants and spectators.

i) Calculate the number of the participant nucleons in a central collision of the
two nuclei characterized by the atomic numbers A and B (the impact parameter is
exactly zero, b = 0). Assume that the nuclei have sharp surfaces and their density
distribution is uniform and equal to the saturation density pg = 0.17/fm?. ii) Find
the numerical value of Npart for the central S+Au reaction.
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Fig. 7.1 Geometry of A+B collision, explanation of the notation used in Ex. 7.4.

Answers:

We assume B < A and use the following notation: R = 1.124Y/3 r = 1.12B/3
H =+R?—1r2, and h = R— H. Simple geometric considerations, see Fig. 7.1, lead
to the formula .

2
Npars = B+ [27rr2H + §7rh2(3R —h)| po. (7.5)

For A =197 and B = 32 one finds Npay = 113.
Exercise 7.5. Transverse-momentum spectra.
i) For the exponential distribution function given by Eq. (2.2) show that the average

transverse mass, (m_ ), and the average transverse momentum, (py), are given by
the expressions,

202 4 2 m + m?

my) = 2 EEEEI (7.6)
(p1) = ﬁé{f}ﬂm@ e/, (7.7)

where m is the particle’s mass. Hint: In the calculation of the average transverse
momentum use the definition of the modified Bessel function of the second kind,
Eq. (31.6) in Sec. 31.2. ii) In the limit m/A < 1 show that

which leads to (m)) — (p1) ~ m?/(2)\). Hint: In Eq. (7.7) use the asymptotic
expansion (31.10).
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Exercise 7.6. Properties of rapidity.

i) Calculate the rapidities of the projectile nuclei in the SPS fixed-target experiments
with the beam energy of 60 and 200 GeV per nucleon. ii) Prove that rapidities are
additive under Lorentz boosts along the beam axis. iii) Show that for a high-energy
particle one can measure independently its rapidity and longitudinal position.

Exercise 7.7. Properties of pseudorapidity.
Using elementary trigonometric identities derive Egs. (2.6) and (2.9).

Exercise 7.8. Mandelstam variables.

i) Besides the two Mandelstam variables s and t, defined by Eq. (3.2), we may
introduce the third variable u = (p; — p})2, where p}, is the four-momentum of the
target particle after the collision. Show that the following relation holds:

s+t+u=m?+ms+mi24+mh2 (7.8)

Here we allow for the general situation where the masses of the particles before and
after the collision are different, m; # mj, my # mj. ii) Show that Eq. (3.3) is
valid for the elastic collisions of identical particles when my = mj, mg = mj, and
mi; =mg =m.

Exercise 7.9. Boost-invariance.
Show that the longitudinal velocity of the form

v — Az — Bt
7 At- Bz’
where A and B are constants, is boost-invariant. Hint: Calculate the corresponding

four-vector u* = (1, v,). Apply the longitudinal Lorentz boost and check that u*
is boost-invariant .

(7.9)

Exercise 7.10. Thickness functions.
i) Show that the nucleon-nucleus thickness function for the sharp-cutoff baryon
distribution and ¢(b) = §()(b) is given by the formula

3VRZ — 12
o (R—1). (7.10)

i) Calculate the nucleon-nucleus thickness function for the Gaussian baryon distri-
bution

Ta(b) =

- - — . 11
pa(84,24) (2m)3/203, P ( 202 (7.11)

iii) Use the result of point ii) to show that for the gaussian baryon distributions
the nucleus-nucleus thickness function is a Gaussian characterized by the width

O'AB=\/O'?4+O%. (7.12)
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Exercise 7.11. Binomial distribution.
For the binomial distribution of the form

P = (7 )ra-p¥ (7.13)

calculate the average value 72 and the variance n2 —n2. Use the obtained results to
get Egs. (3.28) and (3.30).

Exercise 7.12. Gauge symmetry.
Show that Lagrangian of QCD is invariant under local SU(3) transformations.

Exercise 7.13. Bag equation of state.
i) For the simple thermodynamic model discussed in Sec. 5.3 derive the analytic
formula for the critical temperature at p = 0,

T4 _ 90B

© 7 w2(16+21N¢/2 — gx)’
Here g, = 3 is the degeneracy of the pionic states. We note that the expression
in the denominator of Eq. (7.14) is the difference between the number of integral
degrees of freedom in the plasma phase and the pion gas. ii) Calculate the latent
heat of this transition and show that it is equal to 4B,

eqgp(Te) — ex(Te) = 4B. (7.15)

(7.14)

Exercise 7.14. Breit-Wigner formula. :
Fix the normalization of the right-hand-side of Eq. (6.5) with the requirement that

[ w1 (7.16)

—0o0

What is the corresponding value of |1(0)|? that yields

Awﬁme=L (7.17)
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Chapter 8

Definitions

The second Part of this book is a short introduction to the relativistic kinetic theory.
Our presentation remains mostly at the classical level — the particles are treated
as well isolated excitations which are on the mass shell. However, we show how to
include the quantum effects connected with i) the statistical properties of partlcles
and ii) the internal degrees of freedom such as spin or color.

The general approach introduced in this Part will be used later to analyze specific
physical situations. For example, in Chap. 11 we shall use the framework of the
relativistic kinetic theory to describe the quark-gluon plasma production at the
initial stage of the nuclear collisions, and in Chap. 28 we shall dlscuss the production
rate of dileptons from a hot hadronic medium. :

The importance of the kinetic theory relies on 1ts ability to descrlbe non-
equilibrium dynamics of many body systems. Many models of nuclear reactions
in different energy regimes are based on the relativistic kinetic theory. Moreover,
the relativistic kinetic theory constitutes the foundation for other less general ap-
proaches like, e.g., relativistic hydrodynamics. :

In this Chapter we give definitions of the basic quantities used in the relativistic
kinetic theory. In particular, we define the particle current, the energy-momentum
tensor, the entropy current, and different forms of the equilibrium distribution func-
tions. We show in more detail how the quantum statistical properties of particles
are reflected in the definition of their entropy current.

8.1 Distribution function

The basic quantity used in the kinetic theory is the one-particle distribution function
f(z,p) = f(t,x,p). It gives the number of particles AN in the phase-space volume
element A3zA3p placed at the phase-space point (x,p) and the time ¢,

AN = f(z,p) A3z A3p. (8.1)
The main task of the kinetic theory is to formulate the time evolution equation for

f(z,p). In the non-relativistic case f(z,p) satisfies the famous Boltzmann equation
derived in 1872 (for a modern presentation see [1]).
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The one-particle distribution function may be regarded as a classical limit
(Planck’s constant h — 0, h = 27h) of the Wigner function

W@ﬁ@zp)=(Q;ﬁf‘/}fyexp(i%;g><¢B(m4—g)¢a(x—-%)>, (8.2)

namely

f(z,p) = lim > Waal(,p). (8.3)

In Eq. (8.2) 94 (z) is the wave function of a particle with the internal degrees of
freedom specified by the index «, and the angular brackets denote averaging over
various ¥ and 1), states, i.e., they denote a transition from the complete quantum-
mechanical description based on the wave function to the incomplete (statistical)
quantum-mechanical description based on the density matrix

(05 o+ D) o= D)= e b 2). s

It is important to realize that four parameters p appearing in the definition of the
Wigner function are independent. For example, the four-dimensional integration

over p gives
Z/d4p Waa(z,p) = Z <|1/’a (.’L’)l2> = Zpaa(x’ ), (8.5)

(07
which is the probability to find the particle at a spacetime point x. In the classical
limit, however, the only non-zero contributions to Wog(x,p) come from the region
where p° = E, = /m? + p2. Thus, the classical distribution function depends on
the three-momentum p only, as was displayed explicitly above.

8.2 Particle current

The knowledge of f(z,p) allows us to calculate several important macroscopic quan-
tities. In particular, the density of particles and their three-current are given by
the expressions

n(z) = / pf (z,p),
n(z) = / &9 % @,p). (8.6)

We note that the integration measure d®p/p® = d®p/E is Lorentz invariant 1. This
property is most easily seen if we perform a Lorentz boost transformation with the
velocity v along the z-axis. In this case the following transformation rules apply
E — pgv — Ev
E = Pz : p/x _ Pz ,
V1—v? V1—v?
Py = Py, P, = s, (8.7)
1Speaking more precisely, it is invariant under proper, ortochronous Lorentz transformations that

include spacetime translations, rotations, and Lorentz boosts.
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and the new momentum integration measure is

1 jx) E

Since the direction of the Lorentz boost transformation may be always chosen as

the direction of the z-axis we conclude that
3 /

dr_&p (8.9)

E E' ‘
Using Eq. (8.9) and the Lorentz transformation properties of the volume d3z, we
may check that the phase-space volume element dp d®z is Lorentz invariant. There-
fore, we conclude from Eq. (8.1) that the phase-space distribution function f(z,p)
is a Lorentz scalar, see Ex. 10.1. These properties allow us to write the density of
particles and the three-current in the covariant form as the four-vector (the particle

four-current)

d*p' = dpl,dp,dp, =

: 43
N (@) = (@), n(@)) = [ P (o). (8.10)
Conservation of the particle number is given by the equation
OuN¥(z) = 0. . (8.11)

We close this Section with a remark concerning our terminology. We use the
name particle current understanding that it is the flux of particles crossing the
surface of the unit area that has been placed perpendicularly to the flux. Hence,
strictly speaking, N* is the density of the particle current. If particles carry con-
served charges such as the baryon number b or the electric charge e, the four-currents
B* = bN* and J* = eN* are the densities of baryon and electric current, respec-
tively. Similar meaning has the entropy current introduced below in Sec. 8.4.

8.3 Energy-momentum tensor

The second moment of f(z,p) determines the energy-momentum tensor
d3p ’
() = [ v fap). (8.12)

The components of T#” have the following physical interpretation: T is the ‘energy
density, 7% is the energy flow, T is the momentum density, and T is the pressure
tensor.

The energy and momentum conservation laws have the form

0,T* (x) = 0. (8.13)
Expression (8.12) includes only the rest mass and the kinetic energy of particles.

It does not include the potential energy. If the physical system consists of both
particles and fields, the conservation laws are

0, T (z) + 6“Tg;’1d () =0, (8.14)

where TE?) | is the energy-momentum tensor of the corresponding field.
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8.4 Entropy current

One can also use f(z,p) to calculate the entropy current of particles

5#@) =~ [ L2 relr(on), (815)
where
®[f(z,p)] = h3f(z,p) n h3f(z,p) — % 1+ h3f(x,p)] In[l+e h3f(x,p)] . (8.16)
Here € = +1 for bosons and € = —1 for fermions. The classical Boltzmann definition
corresponds to the limit € — 0
Dalf(z,p)] = *f(2,p) nh*f(z,p) — 1] . (8.17)
The second law of thermodynamics in the relativistic notation has the form

8, S*(z) > 0. (8.18)

We have placed explicitly Planck’s constant in the definition of entropy (8.15)
in order to have the correct normalization of the entropy density in thermal equilib-
rium. In the natural system of units used in the previous Chapters h = 2w or h = 1.
To simplify the expression for the entropy, in the kinetic theory one uses often the
system of units where h = 1. Alternatively, one may introduce the distribution
functions f which correspond to our original definition multiplied by k3, namely

f(z,p) = K*f(z,p). (8.19)

8.4.1 Fermions

What is the origin of the complicated form of Eq. (8.16)7 As we shall see below,
this form is related directly to the statistical properties of the particles. Following
Landau and Lifshitz [2] we assume that the available quantum states of the particles
are divided into the groups labeled by the index i (¢ = 1,2, ...). Each group contains
G; states and a certain number N; of the particles that are distributed among
these states. The statistical weight of the whole system, AT, is the product of the
statistical weights calculated for each group,

AT = H AT, (8.20)

and the entropy is given by the famous formula 2

S =InAT. (8.21)

2Equation (8.21), originally written in the form displaying explicitly the Boltzmann constant,
S = kInW, was first given by Planck in Ref. [3]. Nota bene, the constant k was also introduced
first by Planck and many scientists at the beginning of the twentieth century (among them Lorentz
as lately as in 1911) called k the Planck constant [4].
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The number of the available states in the ith group is given by the volume of the
phase space divided by the Planck constant,

G; = 3 , (8.22)
and the ratio N;/G; is related to the phase space distribution function
N; AN
AL A g S , 8.23

In the case of fermions, the statistical weight of the group is equal to the total
number of ways of distributing N; identical particles in G; boxes with not more
than one particle in each box (V; < G;), hence it is given by the combination

= G;!
AT; = NG, — N’ (8.24)
With the help of the entropy definition (8.21) and the Stirling formula,
n! =~ (n/e)", (8.25)
we find
S = Z [Gz In Gz - Ni In Ni - (Gz - Ni) ln(G, - Nz)] . (826)
In the next step, using Eq. (8.23) we find
=Y " Gi[R*filnh®f; + (1 — K2 £;) In(1 — B3f;)]
i
dBpdiz
L [0 (@, ) Ik f(w,p) + (1= h*f(z,p)) In (1~ K (2, p)) ]
(8.27)

or

d3p
d3x ~%3 / O [B®f(z,p) Inh3f(z,p) + (1 — K3 f(z,p)) In (1-Rrf(z,p))].
(8.28)
A covariant form of Eq. (8.28) is given by Eq. (8.15) with € = —1.

8.4.2 Bosons

In the case of bosons, the statistical weight of the group is equal to the total number
of ways of distributing N; identical particles in G; boxes with multiple occupations
of the same box possible,

= (Gi + N; — 1)!

AT; = MR (8.29)
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The entropy definition (8.21) gives
S=>"[(Gi+ Ni)In(G; + N;) = NyIn N; — G;In Gy (8.30)
i

With the help of Eq. (8.23) we obtain

S=3 Gi[A+1f)n(1+h3f) — K3 f;Inh3f;)

-/ TPL (14 (0, 0) W1+ W0, ) — (o) K, )]

(8.31)
or
3
=i | SR IS R () — (14 B e, 0) I (1 + K o).
(8.32)

A covariant form of Eq. (8.32) is given by Eq. (8.15) with € = +1.
8.5 Internal degrees of freedom

For particles with extra internal degrees of freedom such as spin, isospin or color,
the notion of the distribution function f(z, p) may be generalized to the concept of
the phase-space dependent matrix f(z,p), namely

fi1(z,p) fiz(z,p) }

f(z,p) — f(:v,p) = [f21(xap) f2(z,p) ... (8.33)

The coefficients of f (x,p) correspond to the classical limit of the Wigner function
(8.2). The diagonal elements f,q(z,p) define the phase-space densities of particles
with internal quantum number specified by the label a.

For example, for fermions with spin % we may introduce the 2 x 2 matrix

; _ [ fir(=,p) fri(z,p)

fmp)= [fn(-’v,;n) fu(ﬂc,p)J ’
where f11(z,p) gives the number of particles with spin “up” (oriented along an
arbitrary quantization axis, let say, 2), and f||(z,p) gives then the number of
particles with spin “down”. Similarly, we may treat the color degrees of freedom of
quarks. In this case we use the 3 x 3 matrix

frr(z,p) fra(z,p) fRB(w,p):l

fx,p) = {fGR(%P) fec(z,p) fer(z,p)
fer(z,p) fec(z,p) fBB(2,D)

(8.34)

(8.35)

3

(8
(8
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where frr(z,p), foe(x,p) and fpp(z,p) are the phase-space densities of red, green
and blue quarks, respectively.

In all discussed cases the number of particles with arbitrary internal quantum
numbers is given by the trace of f (x,p). This suggests an immediate generalization
of our definitions (8.10), (8.12) and (8.15), namely

N¥(z) = / %p“ Tr [f(w,p)], (8.36)
T (2) = / (f—opp"p" Tr [f(w,p)], (8.37)
50) = [ 220 T [2[f(e.n)]]. (8.38)

In the definition of the entropy flow (8.38), the function & [ f] is defined by the
series expansion of the function (8.16). In this way Eqgs. (8.10), (8.12) and (8.15)
are generalized to the sums over all independent internal degrees of freedom, as it
should be for any extensive thermodynamic quantity. To see this point we may
diagonalize the distribution function

A R A fp,i(z,p) 0 e
f(x,p) - fD(xap) = Uf(xap)U_l =10 fD,2(x’p) T I (839)
and write
N#(z) = Z / P fp,0(20), (8.40)
T (@) = Z / L2 i fpale,p), (8.41)
SH(z) = — hls ‘;’0” 4 B (fpalz,p)]. (8.42)
a=1

The diagonalization (8.39) is always possible since f(z, p) is a hermitian matrix (see
our definition of the Wigner function (8.2)). Moreover, the unitary transformation
(8.39) does not change the physical quantities defined by Eqs. (8.36), (8.37) and
(8.38).
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8.6 Fluid velocity

For systems of particles carrying a conserved quantum number (for example, electric
charge or baryon number) it is straightforward to define the fluid velocity through
the equation

NH(z)
VNH@)N, ()
This definition (called later Eckart’s definition [5]) is, however, not useful for systems
dominated by radiation or mesonic degrees of freedom (with zero electric charge or

zero baryon number, respectively). In this case one can use Landau’s definition of
the fluid velocity [6]. It defines u*(z) by the equation

T (z)u, (z) = AMz) v*(z). (8.44)

ut(z) = (8.43)

The normalization condition of the four-velocity, u*u, = 1, gives A = uqugTP.
The local rest frame (LRF) is defined by the condition u* = (1,0,0,0). In the
Landau approach, the momentum density vanishes in such a reference frame, i.e.,
Tehe = Tigw = 0.

8.7 Relativistic equilibrium distributions

Let us now give an example of the distribution function which is the relativistic
analog of the Boltzmann distribution function,

flp) = % exp (%)

2,0 2 2 .
-1 exp<“ v va+p tu p). (8.45)

TR

The distribution (8.45) was introduced by Jittner in 1911 [7]. It reduces to
the Boltzmann equilibrium distribution in the rest frame of the fluid, where
u* = (1,0,0,0). We note that u* as well as the temperature 7" and the chemi-
cal potential y are independent of x. Otherwise, various transport processes would
be present in the system (heat flow, diffusion) and Eq. (8.45) could not describe the
true equilibrium 3. The relativistic form of the equilibrium distribution functions
valid for systems of bosons and fermions is

1 Pl U — P -
fo) =15 [GXP <——T ) - e] , (8.46)
where € = +1 for bosons, and € = —1 for fermions. Equation (8.46) was given by
Jiittner in 1928 [8].

3Strictly speaking, certain combinations of the gradients of u, Tand ue are allowed to be different
from zero even in global equilibrium. We shall discuss this point in more detail later.
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Equations (8.45) and (8.46) imply the following form of the particle flow, energy-
momentum tensor, and entropy flow in equilibrium

N* = nut, (8.47)
TH = (e + P) v*u” — Pg"", (8.48)
SH = gut. (8.49)

Here n, e, P, and o are the particle density, energy density, pressure, and entropy
density defined in the local rest frame of the fluid element. In this special frame we
have’

Nigp =7, Nigp=0, (8.50)
e =¢, Tikr=Tiar =Tiar = P (8.51)
SERF =0, Sli_,RF =0. (8.52)

Other (non-diagonal) components of the energy-momentum tensor vanish in the
local rest frame, thus we obtain the following structure

e000
v 0OPO0O
000P

We note that the thermodynamic quantitites defined in the rest frame of the
fluid element are Lorentz scalars. The density of particles in an arbitrary frame is
related to the density defined in the rest frame by the formula

n® = nul = ny, (8.54)

where v = (1 — vz) /2 is the Lorentz factor. In the rest frame ~v =1 and we recover
the relation ng = n. Similar equations may be written for the energy density and
pressure.

The Jiittner distribution functions (8.45) and (8.46) may be also substituted
into the definition of the entropy flow (8.15). In this case we find

€+ P—pn
= 7 .
Thus, if the system is in equilibrium our definition of the entropy density o is

consistent with the thermodynamic relation (5.19). The formula (8.15) is, however,
also applicable for non-equilibrium situations. .

Stu, =0 (8.55)

8.7.1 Classical massive particles
Substitution of (8.45) into expression (8.10) gives the density of classical relativistic

particles

4 m
na = et/ Tm T K, (T) , (8.56)
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where K(z) is the modified Bessel function of the second type. Similarly, from the
definition of the energy-momentum tensor (8.12) we obtain
dr T 5 m
€1 + Pa= ﬁeﬂ/ m°TK3 (T) )
4T m
— 2T on/T 22 _
P = 25!/ TmT?Ks (7). (8.57)
Here K3(z) is another modified Bessel function. Definitions of the functions K (z)
as well as their asymptotic expansions and recurrence relations are given in Chap. 31.
Expressions (8.56) and (8.57) yield the equation of state of the relativistic ideal gas
of classical particles (kg = 1)

Py =ngT. , (8.58)

8.7.2 Relativistic massless bosons

Thermodynamic properties of the relativistic gas of massless bosons follow from
Eq. (8.46) with € = 1. In the special case where m = 0 and p = 0 we find
Fp_ 1 _81CE) e ()

h3 ep/T — 1 h3 w2h3 T

The function ¢ appearing in Eq. (8.59) is the Riemann zeta function defined by the
series

np = (8.59)

= 1
(z) = 2 = (8.60)
The frequently used values are:
2 ,
¢(2) = 5~ 1.645,
¢(3) ~ 1.202,
it
4) = — =~ 1.082. .
¢(4) 90 082 (8.61)
The analogs of Eq. (8.57) read
Bp p 4, T,
o= R et 1~ R " 30ml (8.62)
d3p P 4md 2
Py= [ =& = T = —T* .
b h3 3(eP/T —1)  45h3 90R3 (863)
Thus, the form of the equation of state is
1
Py = 360 (8.64)
Moreover, our definition of the entropy flow gives in this case
w, _Sb—l—Pb_lﬁﬂ's 3 22 3
Shuy =0 = T —mpl = 45h3T , (8.65)
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which implies the constant entropy per particle,
oy _ 2t
np  45¢(3)
We note that Eq. (8.62) was used by us in Sec. 5.3, where we discussed the equation

of state of the weakly-interacting quark-gluon plasma.
Equations (8.59), (8.62), and (8.63) follow from the generic formula

~3.6. (8.66)

[ 2% =@, e
0

where ((z) is the Riemann zeta function defined above by Eq. (8.60) and I'(z) is
the Euler gamma, function

[ee)

[(z) = / et 1dt. (8.68)
0
To derive Eq. (8.67) we perform the following manipulations

o0

oo

2 Yz _, . ~(n+1)z o1
/ez—l —/e z l—e"‘_Z/ dz
0 0
_Z/ et 1(n—l—l)-":dt—z

n=0 n=1

1 —tyz—1

= / =1 dt = ((2)T(z). (8.69)
0

The special case where z is an even integer (z = 2n) may be expressed in the form

o0 .
22r=l1dz  (2m)?"B;
/ e—1  4n (8.70)

0
where B} are the Bernoulli numbers [2,9]

«_ 2(2n)!
* 1 * 1 * __ 1 * __ i )
Bi=g, Bij=g5 Bi=5 Bi=g5 - - (8.72)

8.7.3 Relativistic massless fermions
8.7.3.1 Zero chemical potential

In this case one may use the formula which is the analog of Eq. (8.67) used for
bosons,

/ i 1dz: — 217%)¢(2)T (). (8.73)
0
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In order to derive Eq. (8.73) we notice that repeating the same steps as those in
Eq. (8.69) we arrive at the formula

oo
2 ldz
=T 1" 8.74
[T =T L 74
0
Collecting separately the positive and negative terms in (8.74) we find
oo : oo
1 1
S - Y e > &
n=0 ( + 1)1 m=1,3,5,... Lo m=2,4,6,... m®
o0 o0
1 , 1
= 2 = X
m=1,2,3, m=2,4,6,

Il
Ms
%IH

|
™

:/l:; M
\3/!—‘
8

( Pt "”)C (z).
(8.75)

This identity together with Eq. (8.74) lead directly to Eq. (8.73). The undetermined
result for x = 1 is obtained as the integral

A B
/ =2 (8.76)
0

We may now conclude that the energy density and pressure of fermions at zero
value of the chemical potential is related to the appropriate boson densities by a
simple factor of 7/8 (z = 4 in Eq. (8.73)),

7 ™4
€1= 350 = Saom8 L
7 ™

On the other hand, the particle densities are related by a factor of 3/4 (x =3in
Eq. (8.73)),

3
ng = Jnb. (8.78)

The last two equatlons imply, that the ratio of the entropy density to the partlcle
density for massless fermions is given by the formula

O'f 70’b
~4.2. .
ne . Bne (8.79)
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8.7.3.2 Finite chemical potential

At finite values of the chemical potential it is possible to calculate the sum of the
energies of fermions and antifermions

d®p p d*p P
5”'5?‘/?@@—#)”“ | R T 1

_ T /mda/,-—“”3 +/°°dm-—-———“”3 |
—or \Uy e v+1 g ety 41

AnT4 [ [®  (x+y)3  [®, (z-7y)?
T3 (/0 dz e*+1 +/0 dz et +1

i 1 1
— )3
‘+/0 dz(y — z) [e“ 1 to= T 1]) (8.80)
The first two integrals in the last line of Eq. (8.80) may be obtained with the help

of the expressions worked out in the previous Sections,
T dz (x£y)® 7n* 2y’ 9
/—e—zrl——m-l--—‘l— +y’In2+ §yC(3) (8.81)

0
The last integral in Eq. (8.80) is trivial since

1 1
=1 82
[ew+1+6_$+1] 1 (8.82)

In this way, we finally get

1 (1471’5T4
efter=

5 o 427322 + 7TM4>

B }_ Tr2T4 N T2/~‘2 + /—0_4
TR\ 120 4 8r2 ) ”

(8.83)

8.7.4 Ideal relativistic gases — sizmmary

The expressions derived in the previous Section may be used to obtain thermo-
dynamic quantities characterizing the weakly-interacting quark-gluon plasma. For
example, Eq. (8.83) was used by us in Sec. 5.3, where it was multiplied by the factor
6Ns. The factor 6 reflects the spin and color degeneracy of quarks, while Ny is the
number of quark flavors. With the inclusion of gluons, the number of the internal
degrees of freedom in the weakly interacting quark-gluon plasma is given by the
expression

9qep = 8 X 2 (gluon color X spin)

+g(2 x 3 x 2 x Ny) (quarks and antiquarks x color x spin x flavor)

=16+ %Nf. (8.84)
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Table 8.1 Summary of the expressions defining the thermodynamic variables (mean
number of particles, entropy, pressure, and energy) in the case of quantum statistics:
€ = +1 for bosons and € = —1 for fermions. The quantity g is the degeneracy factor
connected with internal quantum numbers.

m>0 m=20
N 35 TVm2e T2, Ceh Ky (2n) 5 T3V eLig (cef)
s s Vmle X S £ T?Ve
X [(AT —ur) Kz (F5) +muKy (Bx)]  x [4TLig (eef ) - pLig (ce#)]
P 5 T'm2e T3, Sefr Ko (Bn) 4 T*eLig (cef)
E s TVme T2, Sefr YTV eLiy (eef)

X [3TK2 (%n) +mkr Ky (%n)]

Table 8.2 The same as Table 8.1 but for classical statistics.

m >0 m=0
N s TV m2ef Ky () 5 T3V ¥
s 52 Vm2ef L T2V ek (4T - p)

x [(AT = ) K () +m K ()]

P #T2 m2eT Ko (%) ;‘%T‘le%
E ;}ETsze% %g—T‘iVe#'

x [3T Kz () + m K1 (7)]

Here the factor 7/8 accounts for the difference between Bose-Einstein and Fermi-
Dirac statistics. With Ny in the range 2 — 3, we find

37 < gqgp < 475, (8.85)

hence, in the limit of vanishing baryon chemical potential, the plasma pressure (with
the neglected bag constant contribution) is given by the formula

P, = IET4 (8.86)
agp = Yqgp 90" .

The summary of the expressions defining thermodynamic variables of ideal rel-
ativistic gases in different limits is given in Tables 8.1 and 8.2, where we have
introduced the polylogarithm function defined by the series

o0 zk
Lin(z) = > - (8.87)
k=1
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The important values include:

Lis1) =C@),  Lis(-1) =~ 5¢),
nt Tt
Lis(1) = 55, Lig(-1) = —z5. (8.88)
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Chapter 9

Relativistic Kinetic Equations

In the second Chapter of Part II we discuss different forms of the kinetic equations
that are used in many branches of the relativistic heavy-ion physics. In Sec. 9.1 we
introduce the Boltzmann-Viasov equations describing collisionless systems. In this
case the interactions are mediated by the self-consistent mean fields. In Sec. 9.2
we analyze in greater detail the effects of collisions. The form of the collision
terms describing binary collisions is derived. The quantum statistical properties of
particles are included in the collision terms through the Uehling- Uhlenbeck phase-
space corrections. The results obtained for simple systems (oﬁe type of particles,
elastic collisions only) are generalized to more complicated systems (different types
of particles, elastic and inelastic collisions) in Sec. 9.3. In Sec. 9.4 the conservation
laws are analyzed. The proof of the Boltzmann H-theorem is given in Sec. 9.5. The
role of the conservation laws in the construction of the local and global equilibrium
distribution functions is elucidated in Sec. 9.6. In the end of the Chapter, in Sec. 9.7,
we discuss a popular approximate treatment of the collision terms, which is called
the relaxation-time approximation.

9.1 Systems without. collisions

At the beginning of our discussion about the relativistic kinetic equations we con-
sider the simplest case, i.e., the system where the effects of collisions are negligible.
In this case the relativistic Boltzmann equation is reduced to the continuity equation
expressing the conservation of the number of particles

P*0y f(z,p) = 0. 9.1)
In the three-vector notation Eq. (9.1) has the structure
0
5 + VP'V f(tv X, p) =0. (92) ]

Integration of Eq. (9.1) over momentum leads to the conservation law (8.11). We
note that the form of Eq. (9.2) is valid also for non-relativistic systems. The only

149
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difference is that the relativistic relation between the particle’s velocity and mo-
mentum

p

P
Vp = — == ———————— 9.3
p Ep /’p“z_' +“_"m2 ( )
should be replaced by the non-relativistic limit
P ,
Vp = E (94)

Equation (9.1) does not take into account the external forces. Their effect on
the motion of particles may be included by adding an extra term

P8y f(x,p) + mF 8} f(z,p) = 0. (9-5)

Since f(x,p) does not depend on p°, Eq. (9.5) may be rewritten in the form

0 m
(5 +vp Vb o F- v,,) f(txp) =0, (9.6)
where
F=(F1’F2>F2)=(FwaFy,Fz) (97)

and V,, denotes the gradient in the momentum space

o 0 0
Vo= +—, —,—|. 9.8
P (8pz apy apz) ( )

The requirement of the particle conservation in the presence of the external force
F imposes the condition, see Ex. 10.7,

E,V,-F=v,-F. (9.9)

One may check that this condition is satisfied for the electromagnetic force, where F
is given by Eq. (9.11). Moreover, in the presence of the external force the divergence
of the energy-momentum tensor does not vanish in the general case. If Eq. (9.9) is
satisfied, it is given by the expression

d3

LrE-v,)p. (9.10)

0T =m E,

In the case of the electromagnetic force, the right-hand-side of Eq. (9.10) is reduced
to the product of the field tensor and the electric four-current.
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9.1.1 Boltzmann-Vlasov equations for QED plasma

The explicit form of the relativistic force F* depends on the type of interaction. In
the case of electrically charged particles

mF* = qF*p,, (9.11)

where q is the electric charge of the particle and F*” is the electromagnetic tensor
containing the electric and magnetic fields,

0 —E, —E, —E,
E, 0 -B, B

FH — _FVH — Y
E, B, 0 -B,

(9.12)

Self-consistent equations constructed from Eq. (9.5) and the additional formula
which determines F*¥ in terms of the distribution function f(z,p) are called the
Boltzmann- Vlasov equations.

Originally, Vlasov introduced such equations in 1937 to describe a collisionless
electron-ion plasma. In this case we have to consider two distribution functions —
one for electrons and the second one for ions. The coupled Vlasov equations have
the following form

"0y fe(z,p) — eF* (2)pu 0} fe(z,p) =0, (9.13)
"0 fiz,p) + ZeF* (z)p, 0}, fi(z,p) =0, (9.14)
8,F™ (z) = ¥ (x). (9.15)

Here f.(z,p) and f;(z,p) are the distribution functions of electrons and ions, re-
spectively. The quantity Z is the atom number of an ion, e denotes the elementary
charge, and

3¥ = (p,J) (9.16)

is the electromagnetic four-current, where
ple) =e [ 125a) - fulap)] (917)
i@ =e [ 12@) - £@p)] v (918)

Of course, Eq. (9.15) is nothing other but the inhomogeneous Maxwell equations *.
The system of equations (9.13)—(9.18) has been successfully used in studies of dif-
ferent phenomena in ordinary plasma physics [1].

1The homogeneous Maxwell equations 8, F*#¥ = 0, where F*#¥ = ghvoB F,p is the dual field
tensor, are automatically fulfilled if one expresses the electric and magnetic fields in terms of the
scalar and vector potentials.
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9.2 Systems with collisions

In the previous Section we considered the case where the interactions between parti-
cles are mediated by the self-consistent mean field. However, in many realistic cases,
the correct description of the evolution of a physical system requires that the effects
of collisions are taken into account explicitly. In this Section we shall present the
standard treatment of such effects, which is based on the following three assump-
tions: i) only elastic binary collisions are important, ii) the number of the elastic
binary collisions between the particles with momenta p and p; at the space-time
point z is proportional to the product of the distribution functions f(z, p)f(z,p1),
and iii) at distances compared to the mean free path of particles the phase-space
distribution f(z,p) is a smoothly varying function of z and p.

The point ii) is definitely the most important assumption. It is known as the
assumption of molecular chaos. In the writings of Boltzmann it was called the
Stosszahlansatz. It means that the colliding particles are always regarded as in-
dependent and their velocities are uncorrelated. Such a treatment of the collision
process replaces the purely deterministic dynamics by the probabilistic description.
In this way, an element of time asymmetry is introduced into the kinetic theory,
which explains why it may be so successful in dealing with irreversible phenom-
ena. We illustrate this aspect in Sec. 9.5 where we show how the kinetic-theory
framework is used to explain the entropy growth.

9.2.1 Loss and gain terms

Let us consider the particles with momenta p placed at the space-time position z. By
definition, their number in the phase-space element A3zA3p is AN = f(z, p)VA3p
(d®xz = V). Since these particles scatter on other particles, their momentum changes
and the number AN decreases. For example, a particle with momentum p interacts
with a particle having momentum p;, which as an effect gives two particles with
momenta p’ and pj. On the other hand, there exists an inverse process. Collisions
of particles with momenta p’ and p/, may result in the production of particles with
momenta p and p;. In this way the number of particles with momentum p increases.
The two competing processes are depicted in Fig. 9.1. The first one should appear
in the kinetic equation for the function f(z,p) as the loss (sink) term, whereas the
second one plays a role of the gain (source) term. The number of the lost particles
may be expressed with the help of the differential transition rate AL'(p,p1|p’,p}) or
the differential cross section Ao (p,p1|p’,p}). Assuming that with each collision one
particle leaves the considered phase-space element one finds

ANIOSS = VA?’pf(x,p)VAsplf(z,pl)AtAF(p,pl |p/7pll)
= V2A%pA3p; f(z,p)f(z,p1) At®;Ac(p, pr|p, P)- (9.19)

Here the information about transition rates and cross sections collected in Chap. 30
may be helpful, in particular Egs. (30.29) and (30.36). The quantity ®; in Eq. (9.19)
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loss term

collision region

gain term

/
&
/ P
/
p
Fig. 9.1 Binary collisions or particles with momenta: p,p’,p1 and p}.

is the flux of the incoming particles,

UM F;
P = —= = 9.20
(2 V Vpop(l) ) ( )
where F; in the invariant flux ‘
Fy = /(p-p1)? — mjm} (9.21)
and vy is the Mgller velocity. As Ex. 10.8 we leave the problem to show that
F
=5y = V& =v1)? = (v x v) (9.22)

For the head on collisions (parallel velocities) the quantity (9.20) is reduced to the
simple definition of the particle flux,

o = h’T‘“' (9.23)
In the next step we rewrite Eq. (9.19) in the form
F; Aa ,
AN = V2D £(0,0)(0110) iy S PUE ) ppt
_ VAtASp A’py A ’A3p1 /0 ,oAa(p,pl ¥, p1)
P o f(@,p)f(z,p1) F;p'"py TAAY,
(9.24)
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To simplify our notation, following Groot, Leeuwen, and Groot, see Ref. [2], we
introduce the transition rate W defined by the formula

Ao (p, , D
W(p,pilp',p}) = Fi p'OpQO—Z(XPT’?A";p—I) (9.25)

and the Lorentz invariant element of the phase space

3
dliny = dPz dt % (9.26)

In this way we obtain the compact expression

A3 1AP A31’1

ANjoss = Al'iny —5— po p 70 f(x p)f( ,pl) W(papl Iplypll ) (927)
1

The total number of particles scattered from the phase-space element A%z A3p is
obtained by integration over all possible momenta p1, p’ and p}, so we redefine the
quantity ANjes as the integral

d3p . d3p’ 30’

pl pl 70 pl f( 7p) f(x7p1)W(p7pllp/,p{l ) (928)

A-N'loss = %Arinv

In the exactly analogous way we derive the formula for the number of the particles
scattered into the phase-space element Az A3p,

d3py d3p a3 p1

1
ANgain = 5 ATiny / 0 —5 f(@,0') flz,p)W (@', pilp,p1).

(9.29)

In Egs. (9.28) and (9.29) we have introduced an additional factor of 1/2 to account
for the effects connected with the scattering of identical particles. The integration
over d3p’ and d3p] in (9.28) and (9.29) is not restricted, hence the final/initial states
of identical particles are double counted if this factor is absent.

9.2.2 Boltzmann equation

Since the kinetic equation describes the change of the number of the particles in the
Lorentz-invariant element of the phase-space, p*9, f = p°dN / dtd*zd>p, the kinetic
equation describing the evolution of the distribution function due to the collisions
has the form

AN, gain AN loss

PO = (G - FRe) = Can), (9.30)
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where the collision term (integral) C(z,p) on the right-hand-side of Eq. (9.30) is

d3p1 d*p’ d®py

C(z,p) = X O PO o AW, pilp,p1) — f AW (2, p11P', )] -
(9.31)
In Eq. (9.31) we have introduced the convenient notation
f'=f@p), fi=1f@p), f=1F(zp), fi=Fflzp) (9-32)

This type of notation is commonly used in the textbooks and articles discussing
the kinetic equations. The relativistic Boltzmann equation (9.30) is the non-linear
integro-differential equation for the one-particle distribution function f(z,p). It is
a straightforward generalization of the kinetic equation derived by Boltzmann in
1872.

9.2.3 Boltzmann-Uehling- Uhlenbeck equation

The first kinetic equation which included quantum effects was proposed by Nord-
heim in 1928 [3] and later by Uehling and Uhlenbeck in 1933 [4]. Their equation
differs from the classical Boltzmann equation by the form of the collision term. The
new form of the collision term for fermions takes into account the effect that the
final states in the scattering processes can be occupied and, consequently, blocked
by the Pauli exclusion principle. Therefore, the collision term for fermions may be
written in the form

d3p; d3p’ d®
3 | SR SR - 1) - B RWG B pp)

—ff1(1 ~h*f )(1 — KW (p,plp', 1)) | (9-33)

Cermions (-77 p)

In the analogous way we can treat the scattering of bosons. In this case we have

/d p1 d3p’ d3p

00 Sl QA+ R )+ )W, pilp, py)
Y41 P

-fAQ+ h3f’)(1 +h2 W (o, p1lp’,p1)], (9-34)

Chosons (.’E b )

where the 1+ h3f terms enhance the probability of scattering into already occupied
states.
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9.2.4 Vlasov-Uehling- Uhlenbeck equation

The phase-space corrections in the collision term are especially important in de-
scription of nuclear reactions at intermediate and low energies. In this case many
scattering states are occupied due to the Pauli blocking effect. At such energies one
should also include the mean fields which keep nucleons together. Inclusion of both
effects leads to the Vlasov-Uehling-Uhlenbeck equation. Its non-relativistic form is

(% + v,V + VU (x, t).v,,) f(t,x,p) = C(t,x,p), (9.35)'

where the mean field U(x,t) is obtained from the nucleon-nucleon potential
V(jx — x'|), namely

U(x,t) = / By P2’V (x — X)) f(t,x,p). (9.36)

The collision term C(t,x, p) on the right-hand side of Eq. (9.35) is a non-relativistic
form of the collision term (9.33), see Ex. 10.10.

9.2.5 Transition rate W

Expressing the cross section by the invariant matrix Mg; = M(p,p1|p’, p} ), see our
discussion preceding Eq. (30.36) in Chap. 30, we find (for x = 4)

1
W(p,p1lp’,p}) = P IM(p,prlp’, )12 6@ (0 +p1 — 1’ —pY). (9.37)

Since W (p, p1|p’, p}) is a Lorentz scalar, it may depend on 10 invariants that may
be constructed out of the four-vectors p,p;,p’ and p}. Four invariants are simply
the squares of those four-vectors. They introduce the mass of the colliding particles.
The next four invariants may be eliminated with the help of the energy-momentum
conservation laws,

P+t =p" (9.38)
In this way one is left with the two independent invariants, which are usually taken
as the Mandelstam variables s and ¢,
s=(p+p)’ =0 +n)%
t=@-p) =@ -0 (9-39)
The dependence of the transition rate W (p, p1|p’, p}) on s and ¢ implies that it has

the symmetry connected with the simultaneous exchange of p with p; and p’ with
p'!, namely

W(p,p1lp',p1) = W(p1,plp}, 0" ). (9.40)

This property will be crucial in our analysis of the conservation laws. We emphasize
that it follows only from the Lorentz invariance and holds for any two-body collisions
(also inelastic).
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In the special case of the elastic collisions of identical particles, the transition
rate W (p,p1|p’,p}) may be written in the form

do(s,t ‘
ey N ¥

cms

where do(s,t)/dQcms is the center-of-mass differential cross section, s and t are
Mandelstam variables defined above, and where the Dirac delta function expresses
conservation of the energy and momentum, see Ex. 10.10. We note that the param-
eter  is related to the scattering angle 6 in the center-of-mass frame, see Eq. (3.3).
We also note that our approach uses the convention of Ref. [2], i.e., the quantity
do(s,t)/dQ|cms corresponds to the measured differential cross section. In the case
when identical particles are scattered the total cross section is obtained by integrat-
ing do(s,t)/dems over all directions and by dividing the result of the integration
by two.

W(p,p1lp',p}) =

9.3 Mixtures

In the previous Section we considered a simple physical system where all particles
were of the same type and they interacted elastically. In this Section we generalize
our results to the situation where different types of the particles are present in the
system and they may interact inelastically. Our presentation follows the treatment
of Ref. [2], however, it is generalized to the case of quantum statistics.

Suppose that we have NV different types of particles described by the distributions
fx(,px), where k = 1,..., N. A straightforward generalization of Egs. (9.30) and
(9.31) is (in the case F* = 0)

P%0u fr(z,px) = ZCM (2, ), (9.42)

where the classical collision term equals 2
1 d3 d3 / d3 /
Cri(z,pr) = (1 - §5kl) /# eh

) p° p)°
X [frfi Wit (0%, P1|PRk> 1) — Fro FiWit (Pks PilPRs 2] )] (9.43)

Equation (9.43) is still valid for the elastic collisions only. For inelastic collisions
the final states may belong to different components. In this case we may write

N
1 d3pz d"‘pz d3p

Ckl(x,pk) =35 —Z
2 i,jZ=1 pl pz pJ
X [fifiWijira (Pe> D310k 1) — Fr FiWiass (s UIpis 7)), (9.44)

2An extra distinction should be made between the momenta p] and p}, in the case | = k. For
simplicity of notation we skip additional indices here.
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where Wjj|i; is the transition rate for the process k +1 — i+ j. If only elastic
collisions take place in the system, the reaction rate Wj;; is reduced to the form

1
Wkllij = (1 — §5kl> (5]%'51]‘ + 51@511) Wit (9.45)

Equation (9.44) can be generalized to account for quantum statistics of particles.
According to the comments of the last Section we may write (for systems consisting
of either bosons or fermions) '

Cri(z,px) = Z /dppl dppz oy [fifife iWijie — fr i FiWaaij],  (9.46)
1,] 1 K 7

where
f=1+eh®f. (9.47)

As before, we have ¢ = —1 for fermions (the phase-space available for scattered
particles is reduced) and € = 1 for bosons (scattering into already occupied states
is enhanced). We shall see that the phase-space corrections determine the forms of
the equilibrium distributions for fermions and bosons.

9.4 Conservation laws

9.4.1 Quantities conserved in elementary collisions

Suppose that ¥ (z) is a microscopic property of k-th particle placed at the space-
time point x and having the four-momentum p}. Let us assume that ¥y (z) is
conserved in an elementary collision k + ! — 7 + j, namely

U+, =W,4+7,. (9.48)

In this case we find
I= /de\I/kal(x pk) =0, (9.49)

k=1
where
d3
dp, = ZPk (9.50)
D,

and the collision term Ci;(z,px) is given by Eq. (9.46). An example of ¥ can be
a number of particles (¥ = 1), any conserved charge (¥), = g), or the energy and
momentum (¥ = pk).

In order to prove relation (9.49) we write explicitly

=1 / APy ARAP.AP; Uy, [fif; Fe FWigia — fi i Wias] - (9.51)
1,5,k,0=1




us .

oy UL e

Relativistic Kinetic Equations 159

One can now change the arbitrary summation indices in the loss term (k « 4,1 < j),
and then make another change (k < [,i < j) followed by the use of Eq. (9.40).
These two manipulations yield ’

N
1 _
I=7 Y [dPdRaRaP; [0+ 0 - W~ ) ffe Wi, (052)
i7j>k)l=1

which is zero according to the assumption (9.48).

9.4.2 Basic conservation laws

The first type of the conservation law one may think of is the conservation of
the particle number. Of course, in relativistic physics the number of particles is
not conserved in the general case. However, if we restrict ourselves to the elastic
collisions only, this conservation law should follow from the kinetic equation. In
this case we take ¥, = 1. Multiplication of the Boltzmann equation (9.42) by ¥y,
integration over pg, and summation over k gives

N N
> / APyp}i0, fr(z,pr) = Y  O*NF = 0»N, = 0. (9.53)
k=1 k=1 .

Thus the conservation law (8.11) is indeed recovered in the case of elastic collisions.

In the analogous way, we may take into consideration any conserved quantum
number gy, e.g., electric charge, baryon number or strangeness. In this case ¥y, = gy
and the appropriate four-current is

- / dPugipl fu(, pi)- (9.54)
Similarly as in the previous case we find
N
> oQk =0"Qu =0. (9.55)
k=1

The third category is the energy-momentum conservation law. In this case we
take ¥y = p and find

N N
> / APepi O fr(z,pr) = Y | 0, T = 9,T" = 0. (9.56)
k=1 k=1 .

Of course, in this way we reproduce the differential form of the energy-momentum
conservation given by Eq. (8.13).
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9.5 Boltzmann H-theorem

In this Section we give a relativistic generalization of the Boltzmann H-theorem 3,

which represents the second law of thermodynamics. The divergence of the entropy
flow is

9,5"(z) = Z / dPy pi0,® [fi] = z / dPy ln< ) Pedufr,  (9.57)

where ®(f) and f, are defined in (8.16) and (9.47), respectively. We stress that in
order to simplify our notation, in this and the next Sections we use the system of
units where h = 1.

We use now the kinetic equation (9.42) with the collision term (9.46) accounting
for quantum statistics of particles

0,58"(x) = —- /deszdP dPjIn (%) [fifi FeFiWasia — fr FLFiFiWikas] -

,],k =1
(9.58)

Change of the indices i, j <> k,l in the loss term gives

8,5"(z) = —= Z / dP,dP.dP,dP, [111 (iﬁ-)— (i})] Fb Fe Wi |

%,5,k,1=1
(9.59)

Subsequently, we employ the property (9.40), which leads us to the expression

== 3 [ananarar, o (34) - (§)] 5

,J,k =1
(9.60)

To proceed further we assume the detailed balance property
Whijij = Wijiki- (9.61)

We note that more detailed proofs of the H-theorem use the so called bilateral
normalization condition, that follows directly from the unitarity of the scattering
matrix. In our simplified approach, that does not include the spin description, we

3In the original Boltzmann notation H is the capital greek letter etal 1
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F1g 9.2 Plot of the function z — Inz — 1.

use Eq. (9.61) as the main assumption. Multiplying Eq. (9.61) by f fifi f_’j_and
integrating over momenta one gets

N
z /dedPldPide [f& FifiFiWiis — fr £iFiFiWijia] = 0.
1,4k, =1 v

(9.62)
In the second term in Eq. (9.62) we make the change of indices 4,5 < k, [ |
N o o .
Z /dedPldPide [fx fififi — fi fifefi] Wija = 0. (9.63)
8,5,k,1=1

Putting together Eqs. (9.60) and (9.63) we obtain

N
WS @) =1 3 / dP.dPdP.dP

%,7,k,l=1 »
fufififi (fkfzfifj) B ] P
* [fkfzfifj 8 fufufifi L fififfiWiji.  (9.64)

The expression in the square bracket has the structure z — Inz — 1 with
z = fpfifi fg /e fifi fj. For positive arguments the function x — Inz — 1 is posi-
tive and vanishes only at z = 1, see Fig. 9.2. This means that we have shown

8,5* > 0. (9.65)

Equation (9.65) is nothing other than the statement that entropy does not decrease.
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9.6 Local and global equilibrium distributions

The special case

0uS* =0 (9.66)
holds if the distribution functions satisfy the condition
f kf 1 f sz
EALAS 9.67
fufi fifs (967)
or
PELITR N SN SN (9.68)

fk fl fz fJ.

The last equation implies that In ( fr/ fk) should be expressed in terms of the col-
lision invariants . In the systems with one type of particles, where the particle
number, energy and momentum are conserved, the general form of ¥y is

Uy = a(z) + bu(x)pk. (9.69)
In this case we obtain
Feal,) = 155 [exp (~() — ba(a)p*) — . (9.70)

Through the identifications a(z) = u(z)/T(z) and by (z) = —uqa(x)/T () We recover
the form of the equilibrium distribution function (8.46)

fea(®,p) = L [exp (%ﬂ) - e}—l. (9.71)

In formula (9.71) the thermodynamic quantities as well as the fluid velocity
depend on the space-time position. This is in contrast to expression (8.46) where
they were assumed to be independent of z. We say that expression (9.71) defines
local thermal equilibrium. Substitution of the condition (9.67) into formula (9.46)
gives

Cri(z,px) = 0. (9.72)

Hence, the collision term vanishes in the local equilibrium and the right-hand-side
of the kinetic equation (9.42) is zero in this case. The left-hand-side of Eq. (9.42) is,
however, not identically zero. It vanishes only if the following equation is satisfied

puau feq(x,p) =0, (973)
which leads to the two conditions
w@)\ _ ug(z) ua(z)] _
Oo, (m) =0, Oa [T(w) ] +0p [T(x) ] =0. (9.74)

W O, e e e D el
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Expressions (9.71) and (9.74) define together the global thermal equilibrium. We
note that conditions (9.74) relax our initial requirement that u, T and u, should be
all constant in global equilibrium.

One way of dealing with Eq. (9.73) is to assume that it is approximately valid
in the sense that its first and second moment vanish [5], namely

9, / EP o fua(z,p) =0,

au /__pupu feq(xap) =0. (9'75)

In this way we obtain the equations of the form OuNf =0 and 9, Tl = 0, which
are nothing else than the equations of the perfect- ﬁuld hydrodynamlcs

9.7 Relaxation-time approximation

In many practical applications one can use the following approximate form of the
kinetic equation [5]

Ef(w.p) = ~u(@)pa {22 —al0D) (9.76)

Here L is a linear differential operator which typlcally appears on the left-hand-
side of the kinetic equation. In the simplest case of non-interacting particles one
has I = POy, see Eq. (9.1). For charged particles moving in the electromagnetic
field L = "0y + ¢F*p,0F. The right-hand-side of Eq. (9.76) is an approximation
for the collision term. Here feq is the local equilibrium distribution function, u®
is the fluid four velocity, and 7x is a parameter describing how fast the actual
distribution function f(z,p) approaches foq(z,p). For homogeneous systems (no
spatial variation of f), in the local rest frame of the fluid we have

of _ of—fe
0 poL —Jea
P = P (9.77)
so p? is canceled and we get the solution
F(#) = feq+ [f (t =0) — fog] e™t/™". (9.78)

Thus 7 is indeed seen to play the role of the relazation time.

To fix the local rest frame of the fluid and to define the local temperature and
density which characterize the local equilibrium distribution function feq We use the
conservation laws. The conservation of the particle number (9.53) gives

ual@) [ AP * [£@,1) ~ fea@:p)] = wala) [N*() ~ NG(@)] =0, (9.79)

and the energy-momentum conservation law (9.56) gives

ua(@) [ AP 9 1£(0,5) ~ foale,9)] = al@) [T (&) ~ T(@)] 0. (980
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Equations (9.79) and (9.80) are five equations which are sufficient to determine
all the needed thermodynamic parameters: the temperature T'(z), the chemical
potential u(z), and three independent components of the fluid four-velocity u®(z).
We note that these conditions are the same as those used by Landau and Lifschitz
in the phenomenological treatment of transport processes in a relativistic gas.

For small relaxation time 7z we may seek a solution of Eq. (9.76) in a form of
the expansion

f=fea+7rR f1) + 7‘123 foy+ - . (9.81)
Substitution of the series (9.81) into Eq. (9.76) and comparison of the coefficients
at various powers of 7g allows us to calculate f(; in terms of f(;_1) (we identify
f©) = feq)- In particular we have

.f(l)(xap) = L feq(xap)- (982)

" u*(2)pa
The function f(1)(,p) can be used to calculate the corrections to the flows and the
energy-momentum tensor which go beyond the perfect-fluid hydrodynamics.
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Chapter 10

Exercises to PART II

Exercise 10.1. Transformation properties of the phase—spdce distribution function.

Show that the integration measure d®pd3z is invariant under Lorentz transforma.-

tions and conclude that the phase-space distribution function f(z,p) is a scalar.

Exercise 10.2. Particle four-current.
Show that the particle current (8.10) may be represented by the integral

N#(z) =2 / d*po(p°) 6(5° — m2)p f(z, p), (10.1)

where 6(z) is the step function and §(z) is the Dirac delta function. Similarly, the
energy-momentum tensor is

T (z) = 2 / d*po(°) 5(* — m2)pp f(z,p), (10.2)

Exercise 10.3. Thermodynamic extensive and intensive variables.
Using the fact that the energy is an extensive function of the parameters S, V, and
N derive the formula

E+ PV =TS+ uN. (10.3)

Hint: Use the relation E(AS,AV,AN) = \E(S,V, N ), where X is an arbitrary pa-
rameter, and the thermodynamic definitions of T', P, and .

"Exercise 10.4. Partition function.

Calculate the partition function Z of the ideal relativistic Bose-Einstein/ Fermi-
Dirac gas. Subsequently, use the relation

Q=-TnZz © (104)
to derive the formula
3 _ 2 |02 '
Q=eVT ,dp3ln 1—¢€ exp o VP +m” . (10.5)
(27h) T
Here € = +1 for bosons and € = —1 for fermions.
165
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Exercise 10.5. Classical relativistic distribution function.
i) With the help of the mathematical identity

r(n+y) =GRl (106)

2 nl22n

and the definitions given in Sec: 31.2 show that the modified Bessel functions of the
second kind may be defined by the expression

Ky,(z) = (2 )' z" /:0 dr (r*—= )n_l/ze_T. (10.7)

By the integration by parts show that Eq. (10.7) is equivalent to the formula

271 (n—1)! *° n—
Kn(z) = ——@T(i?)'—)x‘"/ dr (1% —2?) 32 e (10.8)
* T
Check that one may also use the equation
z" T hy ;1.2
Kpi(z) = (2——__—1)—”/6"“’os Ysinh“"y coshy dy, (10.9)
which in the special cases gives
1 e o]
Ki(z) = 3 / e~ %Y coghy dy (10.10)
and
1 o0
Ko(z) = 5 / e = oshY gy (10.11)
—o0

Note that Eqgs. (10.10) and (10.11) immediately yield
0
—5;Ko(m) = K;(z). (10.12)

ii) Calculate the thermodynamic variables for a system described by the classical
Jiittner distribution function. Hint: Reduce the appropriate phase-space integrals
to the expressions defining the modified Bessel functions. Use the recurrence rela-
tions between the Bessel functions K, (z) with different indices n, see Sec. 31.2.

Exercise 10.6. EOS of the weakly-interacting quark-gluon plasma.

Calculate the energy density ¢ = &(T, u) of the weakly-interacting quark-gluon
plasma consisting of massless partons. Hint: Treat gluons and quarks as an ideal
Bose-Einstein and Fermi-Dirac gas, respectively. In case of problems see Secs. 8.7.2
and 8.7.3.

= O A e

s v o 4
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Exercise 10.7. Collisionless systems.
By integration of the kinetic equation (9.5) over momentum show that the number
of particles is conserved only if the condition (9.9) is fulfilled. In the case of the
electromagnetic interactions show that

8T = F¥j,, (10.13)

where F“# is the electromagnetic field tensor and j* is the electric current. Hint:

Use the integration measure d3p/E,, and assume that f vanishes at sufficiently large
values of momenta.

Exercise 10.8. Invariant fluz.

Consider a collision of two particles with masses m; and mgy. Show that the invariant
flux is given by the formula

F = \/ (p1-p2)? — mim = piv/s, (10.14)

where p; is the initial momentum of the colliding particles in the center-of-mass
frame

Vs = (m1 + m)?][s — (mq — my)?]
2./s ’

In the special case m; = ma = m show that

A= 1\/3(3 “am?). (10.16)

Prove also that the Mgller velocity is given by the formula

pi= (10.15)

F
=gy = Vv =v1)? = (v x v)?. (10.17)
1

Exercise 10.9. Center-of-mass differential cross section.

Consider again a collision of two particles with masses m; and ma. By integration
over the energy and momentum of one of the outgoing particles in the center—of-mass
frame show that

g9t 2
do = 64 6ans |Mf@| dqQ, (10.18)
where p; and ¢ are the momenta of the incoming and outgoing particles in the
center-of-mass frame, respectively, and dQ is the element of the solid angle in the
same frame. Thus, in the special case of the elastic collision of the identical particles
we may write

do

@~ § 47r23 ——— My (10.19)
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Exercise 10.10. Non-relativistic limit of the Boltzmann equation.
Find the non-relativistic limit of the relativistic Boltzmann equation with the col-
lision term

d3p, &3 d
©C(z,p) = 2/ ﬁ'l 1

[f f1W(P ,P1|p,p1) —f f1W(P,p1|P ,P1 )]
(10.20)

V41

Hints: i) use the formula for the transition rate

do(s,t
W (p,p1lp’,p}) = —c(m——z D@ +p—p —ph),

cms

ii) calculate the integral

d3p’ d3
1= [ AW, sl ~ LW Bl 4]

in the center-of-mass frame where p + p; = 0, the result is

=3 [ausi-1 1) VeG4 7y 2260

with d) being the element of the solid angle in the center-of-mass frame. iii) write
the relativistic Boltzmann equation in the form

cms

a(s t)
cms ’

p#o,f =+ /d“”/dn(ffl fﬁ)F(s)d

where F, is the invariant flux discussed above. iv) Using the non-relativistic notation
show that we can write

Otvy- 5= [@n [aa(r - Frm Tigd

’
cms

where vy is the Mgller velocity (compare Eq. (9.22)). v) Analyze the non-
relativistic limit of the last equation.
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KINETIC DESCRIPTION OF PLASMA
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Chapter 11

Color-Flux-Tube Model

In this Chapter we introduce a model of the early stages of ultra-relativistic heavy-
ion collisions, that is suitable for description of transparent collisions. We assume
that the two receding nuclei get color-charged by random color exchange. Separation
of the color charge leads to the formation of a very strong chromoelectric field
between the nuclei. The field lines form color- fluz tubes with uniform energy density.
Under the influence of the chromoelectric field, the ¢g and gluon pairs are created
through the tunneling process. The initial energy of the field is converted into the
energy of a rapidly expanding quark-gluon plasma whose subsequent behavior is
described by the kinetic Boltzmann-Vlasov equations.

The main reason for introducing the color-flux-tube model in this book is the
simplicity of this approach, combined with the use of clear physical concepts related
to confinement. Another reason is that the color-flux-tube model shares common
features with the theory of glasma — a stage following the color glass condensate, see
our discussion in Sec. 4.1.3. This similarity concerns the presence of the longitudinal
color fields in the two frameworks. The difference is that the glasma is built of both
chromoelectric and chromomagnetic fields, while the color-Aux-tube model includes
the chromoelectric field only. Another difference is that the transverse range of the
color fields in glasma is determined by the saturation scale. In the color-flux-tube
model the transverse radius of the tubes is a free parameter that is usually set equal
to 1 fm.

In the first Section of this Chapter we describe in more detail the process of
pair creation in an external constant field. Our discussion is motivated by the
phenomena expected in QED. In the next Section we introduce the abelian domi-
nance approximation of QCD and analyze the creation of qq and gluon pairs in the
color-flux tubes. Subsequently, we introduce the boost-invariant Boltzmann-Vlasov
equations for the quark-gluon plasma. ‘

171
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tunneling quarks and gluons

Lorentz contracted color—flux tubes
nucleus

Fig. 11.1 Quark-antiquark and gluon-antigluon tunneling in strong chromoelectric fields
possibly created at the initial stage of an ultra-relativistic heavy-ion collision. The blank
area surrounding the tunneling pairs illustrates the effect of screening of the original field.
The nuclei are Lorentz contracted and recede from each other with the velocity of light c.

11.1 Schwinger mechanism

The problem of a quantum Dirac field interacting with an external uniform classical
electric field was solved exactly by Schwinger more than 50 years ago [1]. Among
other results Schwinger gave the formula for the vacuum persistence probability.
This result can be used to read off the probability of the eTe™ pair creation (per
unit time and unit volume) in an external constant electric field £ > 0 [1,2],
AN 282X 1 T m2n
= Lo ()

n=1
Here m is the electron mass and e is the elementary charge. Schwinger’s result was
derived later by Casher, Neuberger, and Nussinov [3,4], who treated the décay pro-
cess as tunneling and applied the WKB method to calculate the decay probability.

Casher et al. investigated further Eq. (11.1) in the context of strong interac-
tions, interpreting £ as the chromoelectric field, m as the quark mass, and e as
the strong coupling constant. They argued that confinement may be implemented
by the generation of chromoelectric color flux tubes with uniform energy density,
see Fig. 11.1. Tunneling of quark pairs in such tubes represents the mechanism
responsible for multiple hadron production. _

Following the approach of Refs. [3-5] we derive Schwinger’s pair-production
formula (11.1) in a semiclassical tunneling calculation. The longitudinal momentum
of each member of a pair, at the point z = 0, where the virtual particles emerge
from the vacuum, must satisfy the condition

(11.1)

pj+ph +m? =0, py=im.. (112)

We note that tunneling can be treated as a process which takes place in imaginary
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A

anti particle : Re t : particle

becomes real $——<————»——¢ becomes real

Rgz

—Zf +zf

| |
| 1
| 1
| !
| |
| |
| |
| |

Fig. 11.2 Spacetime trajectories of the tunneling particles. The particles materialize at
the points +zy, where zy = m_ /F.

time, see Fig. 11.2. This is the reason for imaginary momenta of the tunneling
particles. The energy conservation gives

\/pﬁ(z) +p] +m? = Fz, (11.3)

where F' > 0 is the constant force acting on the particle and z is the distance from
the point of its first appearance. The longitudinal momentum is therefore

py(2) = iy/m3 — (Fz)2 (11.4)

The action of one particle, integrated from the initial point to the point where it
materializes, is !

my/F imm?
S,=i/ lpy(2)| dz = L, 11.5
A I iF (11.5)

The probability that a virtual pair can tunnel to a real state, with each component
of a pair having transverse momentum p, , is

2 2
P(py) = | %52 = exp (_ m(m +P¢)> '

F
(11.6)
1The Lagrangian of a relativistic particle moving in an external constant field is [6]
L=-my1—-12+Fz
and the Euler-Lagrange equations
d oL 0L
dt v~ Oz

give

T
dt 1w/

The calculation of the action yields

dz m dz .
S:/Ldt:/sz/(—m\/l—v2+—i_—v2)‘U—:/pIIdZ=’/|p|||dz‘
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Knowing the tunneling probability we can calculate the probability that a pair is
actually created. Following Refs. [3-5], we compute the vacuum persistence proba-
bility, which is the probability that no such tunneling process takes place

(@4i0-3% = TT TITTIITT0 - 7o)

flavor spin p1 2

= exp ZZZZZln[l—-P(p_L) . (11.7)

flavor spin p1 2

Suppose that the spacetime volume available for tunneling is L, L, L,T. The length
required for materialization of a pair is Az = 2m /F, and the time interval needed
for tunneling is determined from the uncertainty principle At = 7/m_ . Thus, we
may write

|(0+|O—)I2=exp{ AL A E /dpl ln[l——P(p_L)]}

flavor

=exp(—L,L,L,T p), (11.8)

where 2 is the spin degeneracy factor and p is the rate at which pairs are created
per unit volume

o [ § (202

flavor ¥ ™% flavor n=1
(1 1. 9)

We note that for the electrons tunneling in a constant electric field the sum over
flavors is reduced to the single term with my = m and F = e£. In this case
Eq. (11.9) coincides with Schwinger’s formula (11.1).

A nice feature of the semiclassical approach is that it gives the p; distribution
of the tunneling pairs. Indeed, Eq. (11.9) can be written in the form

2
In <l—exp (—Wn;,fl)> .

In the reference frame where the longitudinal momentum of the particles is zero (at
the moment when they become real) we have

2
In <1 — exp (——ﬂ?ﬂ'))

where dlyy is the Lorentz invariant element of the phase space defined above in
Eq. (9.26).

dN; F

diz d?p,  4md

(11.10)

dN; F

drinv - m

§ (py) 2° (11.11)
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+ kgq —kgq

surface used to calculate the field intensity

Fig. 11.3 A color-flux tube spanned by k color charges gq. Simple geometry of the system
allows us to use the Gauss law.

11.2 Abelian dominance approximation

The complete treatment of tunneling in the framework of QCD is very complicated,
so we do several approximations. In this way our problem can be solved with the
method outlined above. We assume that the gluon field can be separated into two
parts. The first one represents the coherent part of the field which can be also
interpreted as the classical mean field. The second one describes the incoherent
part

Fu = (Fuu>+5FMV-

We assume that the mean-field part can be diagonalized in color space, i.e., there is
a gauge transformation U which “rotates” (F),,) into the abelian subgroup of the
SU(3) gauge group

Ag

Fu —UF, U ' =F,, = (F’3> + (F;f +6F),.

One can see that (F/“,) has two independent components, Wthh can be represented
by a two-component vector

= ((F.2), (Flu)) - (11.12)

The fluctuating part 5Fl'“,contams only non-diagonal terms (its diagonal compo-
nents are smaller than F,, and neglected). According to the classification intro-
duced in Sec. 5.5, the mean-field part and the fluctuating part describe neutral and
charged gluons, respectively. Quarks couple to the field F,, through the charges
€;, and the charged gluons couple to F,, through the charges n;;, see Egs. (5.25)
and (5.33). It is further assumed that the color-field configuration formed at the
initial stage of a collision corresponds to the chromoelectric field £ = F3°,
The Gauss law, see Fig. 11.3, applied to a color flux tube gives

EA = kygq, (11.13)
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where A = 7mr? denotes the area of the transverse cross section of the tube, k is
the number of color charges at the end of the tube and gq = g(g?, ¢®) is the color
charge of a quark or a gluon. From the definition of the string tension o (the energy
of an elementary tube per unit length) and Eq. (11.13) we get

_lage- 2 (11.14)
773 T 1 '

Substitution of the quark charges (5.25) into Eq. (11.14) yields (independently of
the index 1)

g2
= =, 11.1
% 6.4 (11.15)
Similarly, the gluon charges (5.33) give (independently of the indices 4, §)
g2

We conclude that the string tension of a tube spanned by gluons is three times
larger than that of a quark tube. The Gauss law (11.13) can be rewritten in the

following form ,
_ (204,  [60,
&= Vﬁrqu_ \/m”qu. (11.17)

This equation determines the value of the initial chromoelectric field spanned b}}
the two receding nuclei.

We have three parameters which characterize an elementary tube: the string
tension o, the strong coupling constant g, and the tube radius r. For the standard
value 04 =1 GeV/fm (0, = 3 GeV/fm) we find the following relation between g
and r,

2
¢°> =6 AGeV/fm ~ 30#-&5. (11.18)

We expect the tube radius to be of the order of 1 fm. We thus see that the coupling
constant is quite large, which excludes any perturbative treatment of the tunneling
process. The number of color charges k£ may be obtained from the hypothesis of
random walk in color space [7]

k = vnumber of collisions = gz—é-vrrz,
where dv/d?s is the number of collisions per unit transverse area. One expects
k = 3 for central lead on lead collisions [7].
In the reference frame where the particles emerge from the vacuum with the van-
ishing longitudinal momentum, the production rate of quarks in the chromoelectric
field (11.17) is

dNiy A
dFinv o 471'3

m>
In|{1—exp|-——2% §(p)) P =Ris 6 (p)) %  (11.19)
A;
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where
Ai=(glei- €l =)0 (gles - ] — o) (11.20)

and 6 is the step function, see Eq. (31.1). The quantity A; describes the effective
force acting on the tunneling quarks. The effect of the screening of the initial field by
the tunneling particles is taken into account by the subtraction of the “elementary
force” characterized by the string tension [5,8,9]. Similarly, for gluons one can find

dﬁi' A,,, 7Tp2 ~
dFini = 471_; In (1 + exp (— A:)) l 1) (p“) P’ = Rij 6 (p") 2°, (11.21)
where the effective force is

We note that the rates (11.19) and (11.21) differ by the sign appearing before the
exponent function. This difference has the origin in different statistics obeyed by
quarks and gluons. A rigorous derivation of the production rates, that takes into
account the statistical properties of particles, requires the use of the methods of
quantum field theory. The effects of the pair production of the gauge bosons by the
background fields in the case of non-abelian gauge field theories were studied, for
example, in Refs. [10,11]. We also note that the rates (11.19) and (11.21) include
the spin degeneracy factor, that is equal to 2 for both quarks and massless gluons.

11.3 Kinetics of the plasma formation

In the abelian dominance approximation, the kinetic equations for quarks, anti-
quarks, and gluons can be written as follows [12]

dN;j

(0”0, + gei - F*'p,0%) Gis(x,p) = T (11.23)
— dN;
(p”81l — g€~ FMVPVBII:) Gif(wLP) = ﬁ'a (1124)
“ wr, ap\ o _ dﬁi'
(P 6# +9n;; -F puaﬂ) Gij(x,P) T dr (11-25)

where Gyf(z,p) , Gif(z,p) and Gij(z,p) are the phase-space densities of quarks,
antiquarks and gluons, respectively. Here 4,5 = (1,2,3) are color indices, whereas
f = (u,d, s, c) is the flavor index. The terms on the left-hand-side describe the free
motion of particles and the interaction of particles with the mean field F,,. The
terms on the right-hand-side describe production of quarks and gluons due to the
decay of the field.

Equations (11.23)—(11.25) determine how the particles behave under the influ-
ence of the field. In order to obtain a self-consistent set of equations we should have
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also the dynamic equation for the field. It can be written in the following Maxwell
form

_ 0, F* (z) =% (z) +ip(2), (11.26)
where
3 o 3 ~
Y (x) =g/de” > &> (Gig(z,p) — Gig(x,p)) + Y m:;Gij(z,p)| (11.27)
i=1  f i,j=1 '
and
3
- N; dNy; .,
i (x / Z dF L ay, . AN (11.28)
i=1 mv 'l«>]

Here dP = d®p/E, is ‘the momentum integration measure, see Eq. (9.50) 2. The
current in Eq. (11.26) has two components. The first one, Eq. (11.27), is related to
the simple fact that particles carry color charges €; and n,; (conductive current).
The second one, Eq. (11.28), has the origin in the tunneling of quarks and gluons,
hence; in the creation of color charges from the vacuum (displacement current). The
quantities d” are the dipole moments of the produced pairs.

Let us now analyze the tunneling of the qg and gluon pairs from the plane z = 0.
The energy balance (11.3) gives 3

\/p||+PJ_+mf —Azzfglez £| (11.29)
\/p” +p3 = Azjg |’l’]zJ £| (11.30)

Here Az denotes the distance from the plane z = 0 to the place where the particles
are created, and £ = F3°. Thus, the dipole moments of the emerging pairs are

3 ) \/Ph +mf,
d;; = ge; (2Azi5)sign (e; - £) = 2€i_—eT’ (11.31)

. pL
d?j = 9gNn;; (2Az;5) sign ("7ij : 5) =My —F- (11.32)
U £
Other spacetime components of the dipole moments vanish at z = 0. The functions
sign (e; - £) and sign (77” £) indicate the direction of the induced moments. The

form of S and dj; at z # 0 can be found by making the Lorentz transformation.

2The spin degeneracy factor is included in the productlon rates and definitions of the quark and
gluon distribution functions.

3Here we neglect the effect of screening of the initial field by the tunneling particles. In this way,
our definition of the displacement current (11.28) with the dipole moments (11.29) and (11.30)
is consistent with the energy-momentum conservation laws obtained from the kinetic equations
(11.23)—(11.25). A naive treatment of the screening effect, such as in Egs. (11.20) and (11.22),
fails here because the tunneling is a non-local phenomenon [13,14].
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11.4 Energy-momentum conservation laws

The energy-momentum conservation law for the system of quarks, gluons and the
chromoelectric field is (8.14)

0, TH (z) + 8, Tl q(x) = 0. (11.33)
The v = 0 component of this equation includes the terms
6 9 68 30 OF%
and
3 3
8,TH = /de "9, EZ Gif+Gif) + > G
i=1 f 4i=1
= —gF* . /de py OF Zezz Gis — zf Z WngzJ
4,j=1
dN;y dN,J
+2 /dP P 12_:1 ; dFmV Z Flnv ’ (1135)
where we used Eqgs. (11.23)—(11.25). Using the last results we may write
OF03 2
30 ..
po. 20 / Py Z e Z - g_:l e
30 2. 20 dNif <~ 2P°m;; dNy;
) 7 ) 1 i
+F / apP Z €, - F30 Z dTiny ; M5 - F30 dliny

(11.36)

We thus see, that the field equations (11.26)—(11.28) with the definitions of the
dipole moments (11.31) and (11.32) represent a sufficient condition to have the
total energy of the system conserved (note that the delta functions present in the
production rates generate zero longitudinal momenta at z = 0). Similarly, we may
analyze the v = 3 component of Eq. (11.33) and obtain the same conclusion.

11.5 Implementation of boost-invariance

Following the approach worked out by Bialas and Czyz in Refs. [8,12,15-17] we
impose on our Lorentz-covariant equations an additional symmetry: longitudinal

boost invariance. This invariance means that the description of a system must have

the same form in all frames boosted in the longitudinal direction .

4We recall that the general aspects related to boost-invariance were introduced and dlscussed in
more detail in Sec. 2.7.
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11.5.1 Boost-invariant variables

We use the following boost-invariant variables [15]
u=t?— 22 w=tp|—zE, pi, (11.37)

and also

T=\/1,_1,, ’U=Et—p” z = \/w2+ (m%+p3_) u. (11.38)

From these two equations one can easily find the energy and the longitudinal mo-
mentum of a particle

vt + wz wt + vz
E=p"= 0 PIl=— (11.39)

The phase-space distribution functions behave like scalars under Lorentz trans-
formations. The requirement of boost invariance implies that they may depend only
on the variables 7,w and p,, namely '

f(z,p) = f(r,w,pL). (11.40)
The integration measure in the momentum sector of the phase-space is

dp|

_dw
F

dP =2d'p6 (p* —m3%) 0(p°) = ==

d’p, d’p;. (11.41)
A chromoelectric field £ = F3 does not change under Lorentz transformations
along the z-axis, thus it may be written as

,dh(r) __1dh(r)
du 1 dr’

E(r) = — (11.42)

where h is a function of the variable 7 only. The production rates appearing on the
right-hand-side of the kinetic equations (11.23)—(11.25) have the form

dNiy ~ dNy
dFinv = v (w) ’R’zf’ drinv

= 08 (w) Rij. (11.43)

These two expressions are explicitly boost-invariant and reduce themselves to Eqgs.
(11.19) and (11.21) in the case z = 0.

,_ :l | |
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11.5.2 Boost-invariant transport equations.

The use of symmetries (11.37)—(11.43) in Egs. (11.23)—(11.25) gives us the following
boost-invariant transport equations [12]

8G; dh 8Gig

5 €; - 7 w = TRif (1,p1) 6 (w), (11.44)
0Gy __ dhdGy

or + g€; - 8'7__ ow Tsz (T’pl) 0 (w) s (11'45)
3G dhdGy; =

ot - gnzj : E Sw - TR%] (T’pl) 4 ('lU) . (1146)

Their formal solution is

Gif (T,w,p1) = / dr’' v Rig (7',p1) 6 (Ahi (1,7") + w), (11.47)
0

Gis (ryw,p1) = / dr' 7 Ris (7,p1) 8 (Ahi (r,7) —w),  (11.48)
0

iy (ryw,p1) = / dr' 7 Ry (7p1) 6 (Aha (r,7) +w),  (11.49)
1]

where
Ah; (1,7') = g€ - [h(7) —h(7)],
Ahij (1,7") = gn; - [ (7) = h(7)]. (11.50)

One may notice that the distribution functions (11.47)—(11.49) satisfy the following
symmetry relations

6if (T’ w’p-L) = Gif (Ta _wapl):
Gij (T,w,p1) = Gji (T,—w,p1). (11.51)

We note also that the time integrals in Egs. (11.47)-(11.49) reveal the non-
Markovian character of the particle production mechanism: the behavior of the
system at a time 7 is determined by the whole evolution of the system in the time
interval 0 < 7/ < 7 (for a more general discussion of the issue of memory effects in
heavy-ion collisions see [18,19]).

11.5.3 Conductive current

To proceed further with the calculations we substitute the distribution functions
(11.47)—(11.49) into the definition of the conductive current (11.27). Equations




182 PHENOMENOLOGY OF ULTRA-RELATIVISTIC HEAVY-ION COLLISIONS

(11.39) and (11.51) imply that j*(z) has the following spacetime structure

§"(z) = [{°(2),0,0,5*(z)] =[2,0,0,¢]F (1), (11.52)
where
‘7(7_)2279/10;110 ZG’Zsz(TwPi —i—Zn”Gw(T,w pL)
'J (11.53)

Equation (11.52) implies that the conductive current is conserved
03" (z) = 0. (11.54)

Substitution of the explicit form of the distribution functions G;; and éij in
Eq. (11.53) gives

J (1) =

(o= (55)
(=)

(11.55)

3 T
— 93 ZezZ/ dT/ T//dz AhA (T
2miu t Jo ﬂ/Ahz—i—meu
3
T A iil\is !
_2:3u ij /0 dr' 7' / dsz.——hUAJ () In
i>j

,‘/Ahfj +plu

where we used the definitions of the production rates R;¢ and 7%11' given by Egs.
(11.19) and (11.21).

11.5.4 Displacement current

The boost-invariant displacement current (11.28) should have the same spacetime
structure as the conductive current (11.52), so we may write

jVD(x) = [J%(x),O,O,j?b(x)] = [Z,O, 0, t]JD (T) . (11‘56)
This form automatically yields the conservation law
dvip(z) = 0. (11.57)

We know the expressions for the dipole moments induced in the plane z = 0, given
by Egs. (11.31) and (11.32), hence we can compute the third component of the
displacement current j% (¢, z = 0) and find that

Ip(r)= % ib(r,z=0). (11.58)
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Equations (11.28), (11.29) and (11.30) give

3
T = Z Z / szf Ly
3

2 Ui dw 2 szJ
My [y .
nzj € v L dliny PL

1

T2 (11.59)
1>]

Integration over w in-Eq. (11.59) is trivial and yields

A; ( wme
To() =55 2 “rs ln<1_exp< e )))lm”
A T)Z i ]d2 ln<1+exp(‘ w2l )) pi.
271'37' < My - L& Aij (1)
(11.60)

11.5.5 Oscillations of the quark-gluon plasma

With the all substitutions required by the boost invariance, the field equation
(11.26) may be written as

d’h(r) 1dh(r)

o = T+ I ()] (11.61)

This is an integro-differential equation for the function h(7) because the conduc-
tive current J (7) depends not only on h(7) but also on the values of h(7’) for
0 < 7' < 7. BEquation (11.61) has to be solved numerically step by step for given
initial values. These are taken in the form discussed earlier

h (0) =0, l-CE‘-(O) —Eo=-— ,/2"9kq (11.62)

The solution of Eq. (11.61) is independent of the initial condition for h (7) because
of the cancellations connected with the gauge transformation which leaves £ un-
changed. Since the exchange of color charges at the initial stage of a heavy-ion
collision leads to the color fields spanned by gluons, we assume that q is one of the
gluon color charges 7;;. In reality, after a collision the color distribution of nuclear
discs may be strongly fluctuating in the transverse direction. In this approach,
however, such fluctuations are smoothed out.

The field equation (11.61) can be written explicitly in a compact form in the
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Fig. 11.4 Time dependenée of the chromoelectric field obtained in the boost-invariant
color-flux-tube model discussed in Sec. 11.5 (formulated originally in [12]). The results are
shown for different initial conditions characterized by the parameter k (N; = 2).

case where quarks can be treated as massless particles

Ph(r) _1dn(r) gN :
d'rzT = T dr 2#3{/ dr' T ZGzA2 (T)ﬂzC (ﬂz)

i=1

27r3/ dr' T ng i (T') Bi;C* (Bi5)

>3

T 2(r
ng Z AI(XT)(-i-) ag V AL )Slgn(ez £)D™(0)

T AZ (T [A;
+% i>j i Az] (7')(‘3 Og ( )Slgn (’th 8) D* (0) : (1163)

Here Ny is the number of flavors and

ﬂ:

Ah(7,7") A
VAR (r, 7Y+ A () 727
We use here also the two functions defined by the formulas

o0 [P [Im(1Ee)]
c (y)—/ e

D* (y) = /d§\/2+(1— £lln(1£e9). (11.65)
0

The time dependence of the chromoelectric field, obtained from Eq. (11.63), is
shown in Fig. 11.4. The results are presented for three different values of the initial

(11.64)

)
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chromoelectric field characterized by the parameter k (with Ny = 2). We can
see that the solutions have generally an oscillatory character with a period that is
shorter for larger initial fields (larger values of k). Such oscillatory behavior reminds
us phenomena known from the physics of the “ordinary” QED plasma. In the
considered model the amplitude of the oscillations decreases with time. Early, this
effect is caused by the tunneling processes that transform the initial classical field
configuration into a system of interacting quarks and gluons. Later, the decrease
of the amplitude is caused by the longitudinal expansion of the system (included
implicitly by the boost-invariance).

‘We observe that the tunneling process leads to the very fast decay of the initial
field. A characteristic time of this process is a fraction of fermi. In view of the
RHIC phenomenology suggesting short timescales of the production processes, this
is an attractive feature of the color-flux-tube model.

Knowing h (1) as a function of the proper time 7, we may calculate the time
dependence of all other interesting quantities characterizing the plasma, such as the
energy density and average momenta. In Fig. 11.5 we show the time dependence
of the energy density, dE/dV. One can notice that the energy transferred from the

4 dE 3

<y [Geviim’]
20[
15[ STK=5 ",

0.01 0.02 0.04 0.1 02 0406 1 2 34

Fig. 11.5 Time dependence of the energy density of quarks and charged gluons obtained
in the boost-invariant color-flux-tube model discussed in Sec. 11.5 (formulated originally
in [12]). The larger is the initial value of the chromoelectric field, the larger is the maximum
energy density of the produced plasma. For large values of time, the energy density drops
down due to the strong longitudinal expansion.
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Fig. 11.6 Time dependence of the average longitudinal momentum obtained in the boost-
invariant color-flux-tube model discussed in Sec. 11.5 (formulated originally in [12]). The
changing signs of the average longitudinal momentum reflect the oscillatory character of
the plasma motion.

field to the plasma increases strongly with k. The maximum values of the energy
density reached during the evolution are: 2.5 GeV/fm? for k = 2, 6.3 GeV/fm? for
k = 3, and 19.5 GeV/fm? for k = 5. All these values exceed the critical energy
density for the deconfinement phase transition. This suggests that the considered
model is consistent with the idea of the plasma formation.

It is interesting to discuss the origin of the bumps in the energy-density plots
presented in Fig. 11.5. Their appearance is connected with the threshold effects in
the particle production, see Egs. (11.20) and (11.22). Since the energy is transferred
between the field and particles back and forth, it happens that the field at later
times becomes sufficiently strong and the tunneling processes reoccur. This kind of
processes lead to extra particle production at later times and manifest themselves
as the local maxima in Fig. 11.5.

Figure 11.6 shows the average longitudinal momenta of quarks and gluons, plot-
ted as functions of the proper time 7 for different values of the parameter k. We find
that they oscillate out of phase and that gluons reach larger longitudinal momenta,
than quarks (this behavior is explained by the fact that gluons have larger color
charges). The frequency of the oscillations increases with k.

The average transverse momenta are shown in Fig. 11.7. They also increase with
k. At the very beginning of the process the tunneling of quarks and gluons with
large transverse momentum is possible. When the field decreases, the smaller values
of p, are preferred. Finally, when the field is below the threshold value incorporated
in Egs. (11.20) and (11.22), no tunneling occurs. This sequence explains the time
dependence of (p, ) plotted in Fig. 11.7.
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Fig. 11.7 Time dependence of the average transverse momentum of quarks and gluons
obtained in the boost-invariant color-flux-tube model discussed in Sec. 11.5 (formulated
originally in [12]).

11.6 Apparent thermalization

The production of particles in the fluctuating color fields may be responsible for the
thermal character of the transverse-momentum spectra. To see this point, following
Bialas [24], we consider the Schwinger formula for an elementary flux tube. Using

Eq. (11.10), and keeping only the first term in the expansion of the logarithm, we
find

dN, o? mm?2
m = 4—71—_-3'6Xp (— 02 ) . (1166)

Here we identified the force F' acting on the tunneling particles with the string
tension o (see Ex. 12.3, note also that Egs. (11.20) and (11.22) yield A; = o, and
Aij = 04 for k =1 in Eq. (11.13), below we neglect the difference between o, and
ag)-

The main point of Ref. [24] is that the string tension may fluctuate w1th the
probability distribution given by the Gaussian

2 o?
P(o) = vy exp (—5—(0—5—)—) (11.67)
where
02y = [ doo®P(0). (11.68) .
/

In this case, the transverse-momentum spectrum (11.66) should be convoluted with
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the distribution (11.67),

(o <]

dN dN,
T py = / do T — p. P(o)
0

o0
1 2 9 m?2 o2
= 1 =t - -7 ). 6
3\ 70D /daa exp( = 5(0%) (11.69)
' 0

With the help of the identity

V(1 + 2@)

123/ exp(—2Vab), (11.70)

o0
/ dz 7% exp(—az? — bz~2) =
0

where a > 0 and b > 0, we find

V() (”mﬂ—>

= . 11.71
d*z d?p, 43 V(o?) ( )
Neglecting the slowly varying prefactor we obtain the “thermal” formula
dN m
—_— —— 11.72
d*z d?p, exp ( A ) ( )
with
{o?)
A=/ —. 11.7
o (11.73)
Using the standard value of the string temsion (¢?) = 1 GeV/fm we obtain

A = 178 MeV, a value that is very close to the typical chemical freeze-out tem-
perature Tehem ~ 165 MeV.

In Ref. [24] the fluctuations of the string tension were connected to the stochastic
picture of the QCD vacuum [25-27]. In the previous sections we have shown that the
color fields in the plasma oscillate. It turns out, that this type of behavior also leads
to thermal shapes of the t;ansverse-momentum spectra [28]. Hence, the Schwinger
tunneling mechanism in strong varying fields offers an appealing explanation of a
very fast formation of the transversally thermalized system in heavy-ion collisions.

Let us close this Chapter with a few general remarks. The color-flux-tube model
has several attractive features. In particular, it explains large energy densities
attainable in relativistic heavy-ion collisions and short formation times. It may
explain also the thermal character of the transverse-momentum spectra. We must
remember, however, that it is a simple model based on strong assumptions, for

A e . m ea
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example: the non-linear features of QCD are eliminated, the interaction of quarks
and gluons is mediated by the mean fields only, and no transverse dynamics is
included.

One of the problems of the formalism described above is that it uses the
Schwinger formula that was derived for uniform and static system. In heavy-ion
collisions the particle production is concentrated in finite regions of space, hence,
certain modifications of the Schwinger formula due to the finite transverse size of
the color flux tubes are expected. The modified expressions which take into account
such effects were elaborated in Refs. [20,21].

Being a model, the color-flux-tube approach allows for different practical realiza-
tions. Of course, our presentation followed one special streamline of the arguments
but other approaches are also possible, e.g., see Refs. [22,23].
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Chapter 12

Exercises to PART III

Exercise 12.1. Tunneling along the hyperbola of constant proper time.

The high-energy processes are governed by the proper time 7 = /2 — 22, rather
than by the ordinary laboratory time ¢. Suppose that the tunneling process takes
place at a fixed value of 7, not at a fixed t. Using the semiclassical method, calculate
the tunneling probability in this case. Hints: The particles start tunneling at z = 0
and become real at z = +2;. The energy and momentum conservation laws for a
particle tunneling along the z-axis give

2 2 2,2
mJ_ —l—p” =0z,

p=0 (te —1t), (12.1)
where o is the string tension. Changing to rapidity and spacetime rapidity one gets
tanhy; = = ,

207'\/1~|——m3_/(26r—27'2)
M = 2ys. (12.2)

The tunneling probability is obtained from the formula P = exp(—2ImS), where S
is the sum of the classical actions for the particle and antiparticle, which should be
calculated as integrals over complex and not just purely imaginary time. The final
result for P is the same as in the case discussed in Sec. 11.1.

Exercise 12.2. Lorentz-transformation of the electric field.

The electric field E has only one non-vanishing component, E = (0,0, &), and the
magnetic field B is zero. Find the electric field in the new reference system which
moves along the z-axis with a constant velocity v. What are the components of the
magnetic field in the new reference frame?

Exercise 12.3. Color-fluz tube as a chromoelectric capacitor.

A tube of the chromoelectric field (or a string) can be treated as a chromoelectric
capacitor. For given values of the charge at the end of the tube and the radius of
the tube, calculate the force F" acting on the charge. What is the value of the string
tension o (the latter is defined as the energy per unit length)? What is the relation
between F' and o? Hint: Use the Gauss law and neglect boundary effects.
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Exercise 12.4. Boost invariance of the central region.

Show that a scalar boost-invariant function f(¢,z,y,%) may depend only on
t2 — 22 —y? — 22. Hint: The scalar function is defined by condition f'(z’) = f(x),
and the boost-invariance requires f'(z') = f(z’). Prime denotes the quantities in
the new reference frame, ' = Lz, where L is the Lorentz transformation. Consider
now the infinitesimal Lorentz transformation L = 1 + w and show that f is an
arbitrary function of the invariant 2 — 22 — y2 — 22.

Exercise 12.5. Boost invariant phase-space distribution.

Suppose that the distribution f(t,x,p) is a function of the variables u = t — 22,
w = p,t—2z4/p2 + mi_l_ and p,, f(t,%,p) = G(u,w,py ). Derive the kinetic equation
satisfied by the function G(u,w,p,) if f(¢,x,p) satisfies the Boltzmann-Vlasov
equation

(p"8, + gFup"8t) f = 0.

Assume that all components of F,, are zero except for Fy3 = —F30. Find solutions
of this equation for the case F3° = constant.
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Chapter 13

Perfect Fluid

The perfect fluid is an ideal object which behaves in the very similar way as the
realistic fluids in the cases where we may neglect the phenomena such as shear
stresses, viscosity, or heat conduction. In the local rest frame, the perfect fluid may
be completely characterized by its rest frame energy density ¢ and the isotropic
pressure P.

In this Chapter we introduce the basic concepts concerning the relativistic hy-
drodynamics of the perfect fluid [1-6]. Having in mind very successful applications
of relativistic hydrodynamics to describe relativistic heavy-ion collisions we discuss
explicitly different forms of the hydrodynamic equations. In particular, we analyze
in detail the structure of the equations with cylindrical symmetry (the form appro-
priate for the description of central collisions) and with boost-invariance (the form
appropriate for the description of the central region in the most energetic heavy-ion
collisions). The formalism introduced in this Chapter will be used below in Chaps.
20-22, where different hydrodynamic models of the collisions are discussed.

From the mathematical point of view, the hydrodynamic equations are linear
partial differential equations. The term linear refers to the first order of the deriva-
tives which appear in the equations. The coefficients standing at the derivatives
are usually very complicated expressions containing the functions we want to deter-
mine, hence the hydrodynamic equations are non-linear in the sense that a linear
combination of solutions does not represent the new solution. This feature makes
the hydrodynamic equations quite complicated to deal with and, in the majority of
interesting cases, one has to solve them numerically. Only few cases can be treated
analytically — these are the cases where due to the symmetry reasons one can
reduce significantly the number of independent dimensions and variables.

13.1 Thermodynamics of fluid element
Let us first introduce the concept of a fluid element [2]. This name refers to a small
part of the fluid, whose volume V is much larger than the microscopic size of the

particles but, at the same time, much smaller than the volume of the whole system.
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The four-velocity of the fluid element is u* = (1, V), where v is the three-velocity
1

and v = (1—v?)72 is the Lorentz factor. We specify the change of V' by expression

% =u* 0,V =Vo, vt (13.1)
In the local rest frame of the fluid element, defined by the condition v = 0, Eq. (13.1)
is reduced to the time derivative dV/dt. If there is a quantum number N = nV
conserved during the time evolution of the system, then the conservation law has

the standard form

Opu(nut) =0, (13.2)
which together with (13.1) yields
dN
e 0. (13.3)

Let us now consider the case where N corresponds to the baryon number. Since
the baryon number in the fluid element is conserved, the first law of thermodynamics
reads

dE = TdS — PdV. (13.4)

Here E, T, S and P are the energy, temperature, entropy and pressure of the fluid
element, respectively. The change from extensive to intensive variables,

E S
g = V, 8§ = ]—V:, (135)
gives [2]
de = S g 4 nrds. (13.6)

This equation implies that the energy density € can be treated as a function of
the baryon density n and the entropy per baryon, s. The functional dependence
¢ = &(n, s) defines the equation of state of a considered physical system. If the
equation of state is known, the pressure and temperature may be calculated from
the formulas

Oe
P =n|—) — .
(n,8) =n (an)s € (13.7)
and _ v ‘ :
1 (0e\:
T ==[=Z=) . .
o= (5) - (15)
Introducing enthalpy per baryon,
W e+P
w=W P, (13.9)
we can also write
de = w dn + nT ds, (13.10)
dP =n dw —nT ds. (13.11)
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In many physical situations the baryon density in a system is negligible. This
happens, for example, in the central region of the heavy-ion collisions at the RHIC
top energies, where initially the gluonic and later the mesonic degrees of freedom
play the dominant role. The thermodynamic relations for systems with zero baryon
density are

e+P=To, (13.12)

dP=0¢dT, de=T do. (13.13)

Here o is the entropy volume density,

S

13.2 Euler equation and conservation laws

13.2.1 Systems with non-zero baryon density

The perfect fluid is defined formally by the form of its energy-momentum tensor,
namely

= (e + P)ufu” — Pgh”, (13.15)

where g is the metric tensor with g% = 1. From our discussion of the kinetic
theory we know that such a form of the energy-momentum tensor follows from the
assumption of local thermal equilibrium, see Eq. (8.48). Equations of motion of the
perfect fluid are obtained from the conservation laws

8,T" = 0. (13.16)
Substituting (13.15) in (13.16) and using (13.2) gives

i(wu") = WO, (wi) = ~O"P (13.17)

The projection of (13.17) on the fluid four-velocity u, and the use of the thermo-
dynamic identity (13.11) yields

g; =u!0,s = 0. (13.18)

Equation (13.17) is the relativistic analog of the Euler equation used in the classical
hydrodynamics, while Eq. (13.18) states that the entropy per baryon is conserved.
In other words the flow is adiabatic (there is no heat exchange between different fluid
elements). It is interesting that this condition follows directly from the assumed
form of the energy-momentum tensor (13.15). In the classical hydrodynamics, the
adiabaticity of the flow is one of the independent assumptions which characterize
the perfect fluid [1].
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With the help of Eqgs. (13.11) and (13.18) one may rewrite Eq. (13.17) in the
form : ' ‘ :
(uPu” — g") (Opw — TOys) = —wutouu”, (13.19)

which is equivalent to

du” 1
;T = —— A", P (13.20)

Here we introduced the projection tensor

AR = yFy” — g"v. (13.21)

The four-vectors appearing on both sides of Eq. (13.20) are explicitly perpendicular
to u*, hence only three equations in (13.20) are independent. Together with Egs.
(13.2) and (13.18) they form a system of five equations for five unknown variables:
n, s and three components of the velocity v. We may summarize these equations
in the form

n%UT— = —A" [¢Z(n,s)dun + d2(n, s)0us] , (13.22)
Ou(nu) =0, (13.23)
utdys =0, (13.24)
where
o__m (9P\ _n(ow
Cs —€+P<an)s—w<8n)s (1325)
and
2__" opP
s "e+P<as>n' (13.26)

We note that cs(n, s) is the velocity of sound in the medium characterized by the
equation of state ¢ = £(n, s). Clearly, the explicit form of the equation of state is
required in order to close the system of the hydrodynamic equations. We also note
that Eqs. (13.23)—(13.24) imply the conservation law 9, (ou*) = 0.

If the flow satisfies the condition s = const., Eqgs. (13.22)—(13.24) are reduced
to a simpler form, namely

nddLT = —c2(n) A" 8,n,  Bu(nut) =0. (13.27)
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13.2.2  Systems with vanishing baryon density

The relativistic hydrodynamic equations may be also derived for the fluid with
vanishing chemical potential. In this case, in analogy to (13.17) and (13.18) we
obtain

d
E(Tu”) = u0,(Tu") = 8"T, (13.28)
, Oy (ou*) = 0. - (13.29)
Further manipulations allow us to write Eq. (13.28) as
du” 1
&Y I amw ]
7 TA 0,T, (13.30)
which is an analog of (13.20). Switching from 7 to ¢ one finds
aciz_ =—c(0) A" 8,0, 8, (out) =0, (13.31)
where the sound velocity of baryon free matter is defined by the formula,
OP ¢ OT
2= = _ 2. 13.
“~ % T Too (13:52)

13.3 Euler equation in Cartesian coordinates

In this Section, using the Cartesian coordinates, we give the explicit form of the
relativistic Euler equations, (13.17) and (13.28), in the non-relativistic three-vector
notation. This form is convenient for the numerical analysis of the hydrodynamic
equations in general situations which do not exhibit any simplifying spacetime sym-
metries. We shall also treat the Cartesian form as the starting point for the analy-
sis of the cases with the cylindrical symmetry, Sec. 13.4, or with boost invariance,
Sec. 13.5.

13.3.1 Non-zero baryon density

In Sec. 13.2.1 we showed that for systems with non-zero baryon density the rela-
tivistic Euler equation is given by the formula (13.17),

1
w0, (wu?) = E@"P =0"w —Tds. (13.33)
One may check, see Exercise 1 to Part IV, that this equation may be rewritten in
the equivalent three-vector form as
0 T
e (wyv) +V (wy) = v x (V x wyv) + ;Vs. (13.34)

The three-vector form is the good starting point to analyze each component of the
Euler equation separately. First, we calculate the differentials of the Lorentz gamma °
factor

dy=d(1-v?) 2 Y3v dv, d (yv) = y3dv. (13.35)
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With the help of these two equations one finds the acceleration equation for vg

(1- vg—v)dvz Vg Vy glv_y_i_ VgV dvz___( _ )63
(1—22) dt (1-v?)dt (1-22) dt oz

81n'w NS, 2 _2) 3lnw+ v Blnw+v Olnw _o
Y oy 20z )
(13.36)
To simplify the notation, we have introduced here the total time derivative
ii-—2+v —Q—+v —a-+v _8_
dt ot “or Yoy 0z

(13.37)

The final form of the y- and z-component of the Euler equation is obtained by the
consecutive changes of the indices (z — y,y — 2,z — «) in Eq. (13.36). In this
way we obtain

(L-vi—vd)dvy | wpoe dv. | v dvs Ty 2005
1—2?) dt  (Q—v?)dt  (1-v?)dt w 9y

o, Olnw 41— 0% —e?) Olnw +u, (vz6lnw +vm61nw> _0

ot Oy 0z ox
(13.38)
and , |
(l—v —v)@_z_ V, Vg dvx+ VUy @E—Il—vz)ﬁ
(1—v2) dt  (1—v?)dt (1—0?)dt 0z
Olnw 9 oy Olnw Olnw Olnw)
+os — + (1=22 —v3) 5 TV (vgc 5% T o, ) =0.
(13.39)

13.3.2 Vanishing baryon density

For systems with the vanishing baryon density the relativistic Euler equation has a
simpler form, namely

utdy(Tu”) = 0"T, (13.40)
and in the equivalent three-vector notation may be rewritten as [7]
0
3 (Tyv)+V (Tv) =v x (VxTyv). (13.41)

One can see that these equations may be formally obtained from the equations
derived for the systems with non-zero baryon density if we replace enthalpy by the
temperature and assume that the entropy per baryon is constant, s = const. Thus,

A et bt
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the Cartesian form of the Euler equation for baryon-free matter follows directly
from Egs. (13.36), (13.38) and (13.39)

-y dvs | vy dvy  _wev. dvs
A-?) d  ([A-v) dt (1% dt

OlnT 9 o O0InT OlnT OlnTY
+ Vg D +(1—vy—vz)—&E +vz(vy By + v, g )-0,
(13.42)
(L-vi—vd)do, | _wyv. dv. vy, dvs
(1-v2) dt  (1—-22)dt (1—22) dt
OlnT g o OInT OlnT OlnTY
+ vy p + (1—v2 —22) By +vy (v, 5, tU o =0,
(13.43)
vz —v))dv. | v dow | vy doy
A—v2) dt  ([1—02) dt ' (1—v?) dt
dlnT s 9 0T dlnT = 9T\ _
v T (- —v) — J”’z(‘” 5z Ty )“0'
(13.44)

13.4 Euler equation with cylindrical symmetry

In the cases of central or semi-central collisions and also when one analyzes the
minimum-bias data the expansion of matter may be approximately described as

,f"—---'~"~ V, Vr
~Y

Vd %

/I N

4 Al Y

7 27 NV,
) | % v X
! - \

4
4

! ) ]
' ]
\
\ /X
\ Y

\, ’

\\ ,I

\\ ,/

\\ *
e T g

Fig. 13.1 In the case of cylindrical symmetry we use the standard parameterization, see
Eq. (13.45). Only the radial component of the transverse flow is present. The azimuthal

component is zero since we exclude the possibility that the whole system rotates around
the z axis.
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cylindrically symmetric. In such situations the cylindrical symmetry may be im-
posed on the equations of relativistic hydrodynamics and their analysis becomes
simpler. In the cylindrically symmetric case the scalar thermodynamic quantities
such as temperature or entropy density depend only on the variables ¢, 7 = v/ z2 +y?
and z. On the other hand, the velocity field has the following radial structure, see
Fig. 13.1,

vy = vy (¢, 1) COS P, vy = vy (t,7)sin @, v, = vy(t, 7). (13.45)

The change of the variables from z,y to 7,¢, see Eq. (31.17), implies that the
following relations should be used:

ov Ov sin? ¢
== " cos? ¢ + vy ,
T

Br  or

% _ Ovy o sin
dr ~ Or " r
Ovy _ Ovr . . ,Ccos¢
By or vrsing r
Ovy  Ovr . o cos® ¢

By =5 sin“ ¢ + v, .

(13.46)

Implementing Egs. (13.45) and (13.46) in Eqs. (13.36)-(13.39) one gets the radial
Euler equation for systems with non-zero baryon density

(1-v2) fm+ o avr P avz+v%+vavz
(1—02) "or ' 0z (1- v2) " or # 0z

Olnw Olnw 2,08

Olnw 9
+'UT7+(1—’UZ) o +Ur v —-

(13.47)

and the longitudinal Euler equation

(1—1}) (61;2 v, sz> Uy Uy (8% v, 6vr>
+ Up + U, + = + vy + v,

1 =2 or (1- v2) or 0z
Olnw Olnw Olnw Os
+’Uz-—at-‘—+’l)z1)rW+(1—’UT) E) ——-( — )—z—=0

(13.48)

Here v = 1/v2 + v2 is the magnitude of the velocity.

The analogs of Eqs. (13.47) and (13.48) for the systems with vanishing baryon
density are obtained with the help of the formal substitutions s = const. and
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J z

Fig. 13.2  For the boost invariant systems one has v, = u,/uo = z/t, see Eq. (13.51). The
hyperbolas show the lines of the constant longitudinal proper time, 7 = v/t2 — 22 = const.
The evolution of matter is confined to the interior of the light cone where |z| < t.

w — T'. In this way we find

(1 — vf) ( Ov, Ov, Bvr) Vy Uy ( Ov, Ov, 3vz)
e (L, Ty, ) e (Ve OV

(1—02) \ ot + or 0z (I1—-22)\ ot or T %6z
OlnT o OInT OlnT
+’U7‘W + (1 —’Uz) V +’UT'UzW =0

(13.49)

and

___(1—-'03) %4—’0 .%4_@% Uz Ur %—I-’U %.,.v-%

(1-22) \ ot " or * 0z (1—-v2) \ ot " or 02
OlnT OlnT oy OInT

+v, D +vz'vr——ar + (l—v,,) £ =0.

(13.50)

13.5 Euler equation with boost-invariance

The influential papers by Feynmann and Bjorken suggested that the particle pro-
duction at very high energies has the boost-invariant character, see our discussion
in Secs. 2.6 and 2.7. The RHIC data did not confirm this picture, however, if one
restricts the analysis to the midrapidity region, —1 < y < 1, the assumption of
boost invariance represents a quite reasonable approximation.

Similarly to the case of cylindrical symmetry, also the requirement of boost-
invariance may be implemented in the relativistic hydrodynamic equations. In this
case the thermodynamic quantities depend only on the variables 7 = V2 - 22 ¢
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and y, whereas the velocity field has the structure (see our discussion in Sec. 2.7
and Fig. 13.2)

_ t T _ T_ z
W = 9L vsvy,0) = 30, 2,9) = (1, T0a(r0,0), Toy(ray), 7). (135D)

Here the functions v, Uy depend only on 7 = v 12 — 22, ¢ and y, and coincide with
vy, vy for z = 0. Similarly, at z = 0 the quantity 7 coincides with the Lorentz
gamma factor . By direct differentiation one finds

Ovg Ovg - T2 0V, v, T2_ O vy T2_ 8@
— - = —= = = TUy—, = = —0,—. (13.52
8 Ve, B or’ or 70 oy T 2 Yoy (13.52)
We also find
Loy - _1-0 Vay__ aly (13.53)
1— 2 1—2’ 1—-v2  1-92’
where ¥ = /72 + 1‘)2. Similar formulas may be found for other expressions involving

Vg, Uy and v,. They allow us to rewrite the two transverse components of the Euler
equation, Eqs. (13.36) and (13.38), in the form

Q%) (00 o O (OO | Taly (OB, 5 OOy OO
A-)\or "oz  Yoy) (A-w)\or o=

_ Olnw Olmw _ _Olnw T 2,08
+7 pe + g Ty By ——u-)-(l—v )6_33_0’ (13.54)

+(1-1)

o

va;_a‘; +1_)y

(1-122) (% _ v, _%) By Uy (65,5 _ 00, 81735)

=) \ar "% "™y ) T a- \or By
_ Olnw o Olnw  _ _ Olnw T PN
+0y—- +(1-122) 9y + 0 0y — —5(1 ”)3_y“0' (13.55)

We note that for boost-invariant systems it is sufficient to consider the space-
time evolution of the system in the plane z = 0, where 7 = t and Uzy = Vzy-
The values of the thermodynamic potentials and the flow in the regions away from
this plane may be obtained by the appropriate Lorentz boosts. With these remarks
in mind, it is obvious that the boost-invariant equations may be obtained directly
from Egs. (13.36) and (13.38) if one makes first the substitution v, = z/t and

n



)]

¥

Perfect Fluid 205

subsequently sets z = 0. Proceeding in this way we find

(1 — 02) Ovg Ovg Ovg Vg U ov ov ov
—y(———i-vx— v—>+ - ( L v+ y)

T\ 3t "oz oy ) T 8z Ty
Olnw oy Olnw Olnw T 2,08
o (L) T ey = G- g, =0

(13.56)

(1 - vz) Ovy Ovy Ovy Uy Vg Ovg Ovg vy
_'—(1 — ’1)2) ("— + 'U;I;EZ + ’Uy"‘"‘) + —(1 — ’02) (W + Uw—a—; + ’Uya—y)
+Uy@(;_1t_1£ + (1 —2) Blal;w + vy vy(?—gl;lp— - g(l - vz)g% =0. (13.57)

We observe that the structure of Egs. (13.54)—(13.55) and Eqs. (13.56)—(13.57)
is indeed -equivalent. For the boost-invariant systems we find that Eq. (13.39) is
automatically fulfilled. Hence, as expected, the requirement of boost invariance
reduces the number of the original equations to two.

It is also interesting to note that the form of the boost-invariant equations,
(13.54) and (13.55), and the structure of the cylindrically symmetric equatlons,
(13.47) and (13.48), is identical.

13.5.1 Combining boost-invariance with cylindrical symmetry

For description of the midrapidity region in central collisions we may use the hydro-
dynamic equations which include both cylindrical symmetry and boost-invariance.
This may be achieved by either implementing boost-invariance in Eqs. (13.47) and
(13.48) or by imposing cylindrical symmetry in Eqgs. (13.56) and (13.57). Of course,
in both cases, independently of the way we proceed, we find the same single equation
which plays a role of the radial/transverse Euler equation in this case

Olnw Ohlhw 1 ov, ov, T 2,05
Ur T + or + 1 <E Jr"l)rW) - E(l — UT)— = (1358)
Neglecting the baryon density we may rewrite Eq. (13.58) as follows
OlnT OInT 1 ov, ov, _
o T e 1 ('5? ruge) =0 (18.59)

We note that this form agrees with Eq. (2.22) of Ref. [7]. We also note that Eqgs.
(13.58) and (13.59) are identical in form with the equations describing a longitudinal
one-dimensional expansion, see Egs. (13.70) and (13.71) discussed below.

13.6 Entropy conservation

In the previous Sections we discussed different forms of the relativistic Euler equa-
tion. We know, however, that the closed system of the hydrodynamic equations
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consist of the Euler equation, the conservation laws, and the equation of state.
Thus, in this Section we turn to the discussion of the entropy conservation law
(other conservation laws have the same structure). Similarly to the discussion of
the Euler equation we analyze separately the cases with non-zero and zero baryon
density.

13.6.1 Non-zero baryon density

For the systems with non-zero baryon density the entropy conservation law is in-
cluded in the simple form by the continuity equation (13.18). For cylindrically
symmetric systems we have

Os 0s Os
utOus = (Bt + vra + v, 82) =0. (13.60)
On the other hand, for the boost-invariant systems the entropy depends on 7, z,
and y, where 7 = v/t2 — 22. In this case we find

Ost Os 0Os 0s z
" —— ] =
utdus =y <6 -+ " o + vya — Vg 7_) 0. (13.61)

For the boost-invariant systems we also have v, = z/t, hence we may write

852_“}@4_ %
*5z " Yoy

33 =0 (13.62)

or

Qs—ﬁ-f) -(Z'SL-I-T) @;—
or Tox ' Yoy

where the fluid transverse velocities U, 0, were introduced in Sec. 13.5. Again, we
observe the formal equivalence of the equations valid for the cylindrically symmetric
and boost-invariant systems.

It is important to note that for the systems with non-zero baryon density we also
have to include the baryon number conservation, see Eq. (13.23). Since the form of
this equation is identical to the entropy conservation law used for the systems with
zero baryon number we directly switch to the discussion of the equation 8, (ou*) =
0. We shall see that this equation has different form for cylindrically symmetric
and boost-invariant systems.

=0, (13.63)

13.6.2 Vanishing baryon density

In the case of vanishing baryon density the entropy conservation is given by
Eq. (13.29). In the Cartesian coordinates it has the form ‘

Olno ov
e +v Vlna+ (Bt

+v- Vv) +V.-v=0. (13.64)
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In the case of the cylindrical symmetry, Eq. (13.64) may be transformed to the
expression

61n0+ 01n0+ Blna_l_ Uy %4_1)%_“)%
ot Ur or vz 0z 1—22\ ot " or * 9z

_Y _a_'y_.z_ + o % + _C:)'U_z_ + Ovr v | v,
1—22 \ 8t "ar "8z

81‘+r 0z

=0.  (13.65)

Equation (13.65) together with Egs. (13.49) and (13.50) form three equations for
four unknown variables: v,,v,,T and o. To close this system we have to provide
the equation of state specifying o in terms of 7. Then, a closed system of equations
is formed which may be used to study the hydrodynamic behavior of cylindrically
symmetric baryon-free matter (e.g., the matter formed in the central collisions in
the midrapidity range).

Similarly, for the boost-invariant systems one gets

or "oy T Tism\ar T TGy,

dlno e Olno _ Olno Uy sz Oy 07,
ox Y By
Uy (t%y va 0ty ) sz v

1
— —_— y _— =
@\ o T Ty )t et ey Ty 0, (13.66)

where ¥ = /92 + 92. Equation (13.66) together with Egs. (13.54) and (13.55),
where the formal substitutions s = const. and w — T are done to switch to the
baryon free case, form the system of three equations for four unknown variables:
Uz, Uy, T and . Similarly to the cylindrical case, in order to close the system we have
to provide the equation of state. Finally, one can notice that the equations (13.65)
and (13.66) have different structure. Thus, we conclude that the basic difference
between the form of cylindrically symmetric and boost-invariant system resides in
the form of the conservation law 9, (out) =0 or d,(nu*) = 0.

Of the special interest is the boost-invariant cylindrically symmetric expansion.
In this case one obtains the following equation (at z = 0)

62” +vra§;0 +5 _1v2 (v,,%’tl + %"’”) +I 4 -1— 0. (13.67)
The last two terms in Eq. (13.67) follow from the divergence of the three-velocity of
the fluid rewritten in the cylindrical coordinates. One may check that Egs. (13.59)
and (13.67) reproduce the system of equations studied by Baym et al. in Ref. [7].
Neglecting the transverse expansion in (13.67) one obtains the simple equation
Olno 1

= 13.
o + 7 0, (13.68)
which leads to the famous Bjorken scaling solution [8]
o(t) = oy 2. (13.69)

t
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We note that in this case Eq. (13.59) is trivially fulfilled since v, = 0 and T is
independent of r. The important consequences of Eq. (13.69) will be studied in
Chap. 21.

13.7 One-dimensional expansion

Very often in the model studies one neglects the transverse expansion of matter
and concentrates on the longitudinal expansion of the system (we must stress here,
however, that the realistic description of the evolution of matter requires the incor-
poration of the transverse expansion which is quite substantial at RHIC). In such a
simplified case Eqgs. (13.36) and (13.38) are automatically fulfilled, while Eq. (13.39)
is reduced to the form

Olnw Olhw 1 (sz Ov

2 T 2,08
vy T m'Hfmz7ﬁ+W5)‘ﬁ“””$—& (13.70)

The analog of Eq. (13.70) for baryon-free matter is the following
OlnT OlnT 1 (81),, sz) _0

(13.71)

vz ot + oz + 1—v,2 _E)T—H)ZT??
To form a complete set of hydrodynamic equations in the case ug = 0, Eq. (13.71)
should be considered together with the entropy conservation, see Eq. (13.65), which
in the case of purely longitudinal expansion has the form

Olno Olno Vy ov, ov ov )
ot "8, T1-w (%‘F”za_;) +5, =0 (13.72)
For boost-invariant systems v, = z/t and the temperature T depends on the
combination t? — 22. Hence, in this case Eq. (13.71) is automatically fulfilled. This
property is used in the Bjorken model [8], where the only non-trival equation is
related to the entropy conservation, see Eq. (13.69). The Bjorken model is discussed
by us in greater detail below in Chap. 21.

13.7.1 Simple Riemdnn solution

If the equation of state is of the form P = c2e, where the sound velocity cs is
a constant, the system of equations (13.71) and (13.72) admits a simple solution
where

. cst+Z
t = 13.
v(t, 2) T os (13.73)
and
1—cot—2\%/2
T(t =T —— . 13.74
) =1 (521 (1874

The validity of this solution may be checked by the direct substitution of (13.73)
and (13.74) in Egs. (13.71) and (13.72). For any given time ¢ the range of z is
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Fig. 13.3 The temperature (a) and velocity (b) profiles describing the rarefaction wave
entering the region of hot matter. Initially, the matter is uniformly distributed in the
region z < 0 and its temperature is 7;. The rarefaction wave enters the system from
right to left at the speed of sound. The value ¢ = 1/3 has been used in the plots. The
long-dashed, dashed, dotted-dashed and dotted lines describe the profiles for ¢t = 1, 2, 3,
and 4 fm, respectively. The solid line in the left panel describes the initial step-like profile
of the temperature. On the right-hand-side, the edge of matter expands in vacuum at the
speed of light. For each value of time, the Riemann solution is restricted to the interval
—ct<z<ct

restricted to the interval —cst < z < t. Equations (13.73) and (13.74) describe the
rarefaction wave entering the region of uniformly distributed hot matter initially
placed in the region z < 0 and characterized by the constant initial temperature T}.
The front of the rarefaction wave travels to the left at the speed of sound ¢;. At
the other end, the matters expands in vacuum at the speed of light, see Fig. 13.3.
Characteristic features of the simple Riemann solution appear in more sophis-
ticated models of heavy-ion collisions. For instance, in the Landau model the Rie-
mann waves describe the expansion of the outer/fragmentation regions. The non-
trivial Khalatnikov solutions describing the behavior of the central part of matter
are matched to such simple waves, see Chap. 20. Similarly, the initial transverse
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expansion of matter may be also described approximately by the simple waves if
the initial distribution of matter is uniform (step-like) in the transverse plane. For
further use, in particular for the analysis of the Landau model, it is convenient
to introduce the relation between the velocity and the temperature in the simple
waves. Simple manipulations with formulas (13.73) and (13.74) yield

T
¢ =—In 7 U= tanh 9. (13.75)
We note that Eq. (13.73) may be also rewritten in the form
v —Cs
=t . 13.76
z 1+veg ( )

13.8 Boost-invariant cylindrically asymmetric case

13.8.1 Introduction of cylindrical coordinates

Equation (13.66) should be analyzed together with Eqs. (13.56) and (13.57), and
also with the equation of state connecting T' and o. Such a closed system of equa-
tions may be used to study cylindrically asymmetric expansion of matter formed
in the midrapidity region during the most energetic heavy-ion collisions (e.g., top
RHIC energies where the effects of the baryon number on the evolution of matter
may be neglected). In particular, this set of equation may be used to address the
problem of the formation of the elliptic flow.

Due to the physical importance of this case, we discuss it in more detail now. At
first we show that the hydrodynamic equations may be cast in a quite elegant form
[9] if one uses the cylindrical coordinates and uses the following parameterization
of the transverse velocities, see Fig. 13.4,

vy =veos(¢p+ @), vy =vsin(¢+ ). (13.77)
Here v = ,/v2 + vg and « is the dynamic angle describing deviations of the trans-

verse flow from the radial direction.

Adding together Eq. (13.56) multiplied by v, and Eq. (13.57) multiplied by
vy we obtain (if necessary, to describe the central baryon-free region we make the
formal subsitutions: s = const., w — T', z = 0)

0 0 .0 .
e (rTyv) + rcos ap (Ty) +sin aa—¢ (Ty) =0. (13.78)

Similarly, subtracting Eq. (13.56) multiplied by v, from Eq. (13.57) multiplied by
v, we find

da wvsina oT  cosa 0T
T 2 s — qi —_— —_— = .
vv (dt + ) sin + " 9% 0, (13 79)
where R I R B 9 wvsina 9
vsina
E—aﬁ-va;% +’Uy5:l'/“——5¥+’UCOSO£E+ r (9_¢ (1380)
Finally, the entropy conservation gives
0 0 .
5 (rtoy) + o (rtoyvcosa) + 5 (toyvsina) = 0. (13.81)
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Fig. 13.4 The notation used to define the components of the fluid velocity in the transverse
plane, z = 0. The magnitude of the flow v and the angle o may be treated as two dynamical
variables equivalent to v, and vy.

13.8.2 Global entropy conservation

By integration of Eq. (13.81) over the space coordinates r and ¢ we obtain the
following constraint

o 0 27
ot [/(; drr/o doto(t,r,¢)y(t,r,¢)| =0, (13.82)

which yields

const.

oS} ’ 27
/ drr/ dpo(t,r,d)y(t,r,¢) = . (13.83)
0 0 t

We note that the integration of the second term in Eq. (13.81) gives zero since 0 — 0
for 7 — oo0. On the other hand, the integration of the third term in Eq. (13.81)
vanishes due to the periodic conditions of the type o(t,r,0) = o(¢, 7, 27).

Equation (13.83) represents the generalization of the famous Bjorken scaling
law for the entropy density, see Eq. (13.69). If no transverse flow is present, the
Lorentz gamma factor is equal to unity and the entropy density is a function of
the time only. In this case Eq. (13.83) is reduced to Eq. (13.69). In the realistic
situations including the presence of transverse flow, Eq. (13.83) suggests that the
decrease of the entropy is faster than in the Bjorken model — it is triggered by
both the longitudinal and transverse expansion of the system. Another nice feature
of Eq. (13.83) is that it may serve as a convenient check of the numerical method
used to solve the hydrodynamic equations.

13.8.3 Characteristic form

Equations (13.78), (13.79) and (13.81) are three equations for four unknown func-
tions: T', o, v, and «. To close this system of equations we should add the equation
of state, i.e., the functional relation connecting T and o. In this Section, following
the method introduced in Ref. [7], we show that the information about the equation
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of state may be conveniently encoded in the hydrodynamic equations through the
use of the temperature dependent sound velocity. In the general form, this prop-
erty appeared already in Sec. 13.2.2, see Eq. (13.31). In our specific situation (the
boost-invariant and cylindrically asymmetric expansion) the method of Ref. [7] has
further advantages: the number of the independent equations is reduced by one (at
the expense of the formal extension of the radial coordinate r to the negative values)
and the initial conditions at the origin of the system are automatically fulfilled.

We refer to the formulation proposed in [7] as to the characteristic form of the
hydrodynamic equations. Besides the sound velocity ¢s(7") this form makes use of
the potential ® defined by the differential equation

1
do = T _ o, (13.84)

The integration of Eq. (13.84) allows us to express ® in terms of the temperature
or to express temperature in terms of ®. In this way we obtain the two functions:
®7(T) and Te(®P). The functions of this type turn out to be very useful in the
further analysis of the hydrodynamic equations !.

In addition to the potential @ we introduce also the quantities ¥ and a4 defined

by the relations

v=tanhd, ai =-exp(®+t9). (13.85)
Multiplication of Eq. (13.81) by the expression c¢,/(rto coshy) and the use of
Eq. (13.84) leads us to the formula

0= —? +vcosa?2 +USiﬂ;¥--‘?—? + cs'u?—12 +cscosa§-12 +CS§_'1_n_g@
ot or r 0¢ ot or o¢
+csv5)—§gg% — csvsin ag—(: +cs E +2 cosa] (13.86)
Similarly, Eq. (13.78) may be rewritten in the form
O—csva +cscosagq) +csSII;agz +@+vcosa? + SII;Q%. (13.87)

The sum and the difference of Egs. (13.86) and (13.87) gives two equations for the
functions a4

(vEes) osaaai + (v+es) sinaday
(1£csv) or  (1xew) r 09
_Csv ,naﬁ_a B cosa_c?g
(1 £csv) S r 0¢ o
Cs 1 wvcosa
+ %) [— } at =0, (13.88)

1We introduce the subscripts to make clear what kind of the argument is expected for a given
function. For example, the temperature may be considered as a function of entropy or ®. In those
two cases one should use the functions T, or Ts, respectively.
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Fig. 13.5 The example illustrating the definition of the functions a4 (¢,r, ¢) and a—(t,7, $)
in terms of the single function a(t,r,¢) defined in the extended region of r. The function
a(t,r, $) is symmetrically extended to the negative values of r.

while Eq. (13.79) takes the form

Oa (1«—’02)03(, o cosa@@)
— =-——"— |sina— — =

a - v Yo T Tr 9
0o sinada sina
—v (cosaﬁ + 9% + " ) . (13.89)

Equations (13.88) and (13.89) are three equations for three unknown functions:
ay(t,r, @), a—(t,7,¢), and a(t,r, ¢). We note, that the velocity v and the potential
® are functions of a4 and a_,
ay —a— 1
=t == -). 13.
a Ta’ o 2ln(a.,.a ) (13.90)

Similarly, the sound velocity appearing in Eqgs. (13.88) and (13.89) may be also
represented as a function of a4 and a_, :

o(T) = s {Tq, [% 1n(a+a_)] } . | (13.91)

Clearly, this system of equations is closed if the function Ts is known. It may be
obtained directly from the equation of state. ‘

13.8.4 Boundary conditions

For the moment we shall restrict our considerations to the cylindrically symmetric
case which was studied originally in [7]. For such a symmetric situation all terms
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in Eq. (13.89) vanish (0®/0¢ = 0 and « = 0) whereas Egs. (13.88) are reduced to
Egs. (2.24) of Ref. [7]
Oax (vtes) Oax Cs 1 v

ot  (lxecw) Or  (1Eesv) [-t- + ;:I ot =0. (13.92)

Due to the symmetry reasons, the velocity v should vanish at r = 0,
v(t,r =0)=0. (13.93)

This condition is achieved by demanding that the two functions a4 (t,7) and a_ (¢, 7)
may be expressed in terms of a single function a(t,r) with the help of the prescrip-
tion, see Fig. 13.5,

at(t,r) =a(t,r), r>0,

a_(t,r) = a(t,—r). (13.94)
The ansatz (13.94) and the structure of Eqgs. (13.92) indicate that the equation for
a_(t,r) may be obtained from the equation for a (t,r) by the substitution: r — —r.
This observation further means that two equations (13.92) may be reduced to a
single equation for the function a(t, r) with the range of the variable r extended to
negative values,

0a (v+cs) Oa Cs 1 v
0= T Urew)or T Trow) [Z + F] a- (13.95)
Furthermore, the ansatz (13.94) and Eq. (13.90) automatically yield the desired
boundary condition for the temperature
oT(t,r)
or |,

The presented method of dealing with cylindrically symmetric hydrodynamic
equations was introduced in Ref. [7]. The analogous method for dealing with cylin-
drically non-symmetric systems was given in Ref. [10]. Similarly to the cylindrically
symmetric case we combine the two functions a4 and a_ into one function a defined
in the extended r-space

=0. (13.96)

at(t,r,¢) = a(t,r,9), r>0,

a_(t,r,¢) = a(t,—r,¢). (13.97)
The inclusion of negative values of r implies that we also have to define the function
a(t,r,¢) in the range r < 0. This is done by the assumption ,

a(t,—r,¢) = at,r,¢), r>0. (13.98)
Using definitions (13.97) and (13.98), Eqs. (13.88) are reduced to a single equation
for the function a(t,r, ¢),

da  (v+e,) cosa—a—a—f— (v+cs) sinada
ot (14 csv) or  (I4+cw) r 0¢

CsV . Oa cosaOa
——|sina— - —— 1 a

(14 csv) or r 0¢
Cs 1 wcosa
1+ co0) [? + - ] a=0, ‘ (13.99)

le

fc
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Equation (13.99) should be solved together with Eq. (13.89), where the range of r
may be extended naturally to negative values. The use of the cylindrical coordinates
leads to the periodic boundary conditions

a(t,r,0) = a(t,r,2m),
a(t,r,0) = a(t,r, 27). (13.100)

We also note that Eqs. (13.97) and (13.98) yield the following boundary conditions
for the temperature and the function «(t,r, @),

oT(t,r ¢) da(t,r, §)

or or
In addition, multiplying the equation for a, in (13.88) by a— and subtracting the
equation for a_ multiplied by a4 one finds
10T(t,r, ¢)

r  0¢

=0, =0. (13.101)

r=0

r=0

=0. (13.102)
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Chapter 14

General Aspects of Perfect-Fluid
Dynamics

In this Chapter we discuss general properties of the relativistic flow of the perfect
fluid. -Our starting point are the hydrodynamic equations introduced in the previous
Chapter. In particular, we discuss here the non-relativistic limit, the Bernoulli
equation, and the conservation of circulation.

14.1 Non-relativistic limit

In the classical physics the number of particles in the fluid element is conserved.
Hence, discussing the non-relativistic limit, we may simply identify the conserved
quantity N introduced in Sec. 13.1 with the particle number. Proceeding in the same
way as in Sec. 13.1 we find the following non-relativistic thermodynamic relation

%dP + T dspy = dwyy, (14.1)

where p is the mass density (M/V') and sy, is the entropy per unit mass (S/M). The
quantity wy, is the non-relativistic enthalpy per unit mass (Wy:/M). The latter is
connected with its relativistic counterpart by the formula

W  M+W, M Wy,
N~ "™y wm
where m denotes the particle mass. The mass gives contribution to w since the
relativistic enthalpy, as well as the relativistic energy, include the rest energy of
particles. In the transition from the relativistic to the non-relativistic hydrodynam-
ics we extract this part. In fact we observe that m is the dominant contribution to
w if the non-relativistic limit is taken. Having also in mind that the Lorentz factor
~ approaches unity in this limit, the spatial components of the relativistic Euler
equation (13.17)

w= =m + mwn,, (14.2)

d i 1o '
-(F(w'yv )= ~_EV P, (14.3)
may be approximated by the expression ‘
i . .
W __1gip__lyip (14.4)
dt mn p

217
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which is nothing other but the Euler equation known from the classical hydrody-
namics.

Similarly, the non-relativistic limit may be obtained from Eqs. (13.36)—(13.39).
For example, in the non-relativistic limit Eq. (13.36) does not include the time
derivatives of v, and v, (in the notation containing explicitly the speed of light the
products of the velocities are supressed by the factor ¢). One may check that this
equation is then reduced to the z-component of the non-relativistic Euler equation

dvy/dt = —(1/p)(OP/0x).

14.2 Bernoulli equation

Let us consider the stationary flow of the relativistic perfect fluid described by
Eq. (13.34). The stationarity of the flow means that the term with the time deriva-
tive vanishes. In addition, we assume that the flow satisfies the condition s = const.
In this case Eq. (13.34) takes the form

V(wy) =v x (Vxwyv). (14.5)
By myltiplying Eq. (14.5) by v we obtain the condition
vV (wy) =0, (14.6)

which states that the quantity w+y is constant along the stream lines. Considering

the non-relativistic limit we find
2

9 v
wy & (m + mwy,) (1 + %) ~m <1 + % + 'wm) = const., (14.7)

which is equivalent to the well-known non-relativistic form of the Bernoulli equation
1]

v2
5 + Wy = const. (14.8)

14.3 Relativistic circulation

The example of the Bernoulli equation shows that it is useful to define other phys-
ical quantities which are relativistic generalizations of the well established non-
relativistic concepts. In particular, the relativistic circulation is defined by the
expression (2]

1
== n
c ]iw ut 6z, (14.9)

where w is the enthalpy per baryon with mass m (per particle in the non-relativistic
case), and C is an arbitrary, closed integration contour in the Minkowski space. For
relativistic fluids with zero baryon number the appropriate definition is

c =7{ T u* bz,,. (14.10)
c
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Fig. 14.1 The world lines of the fluid elements o and 3. The space-time interval between
the points a1 and az is the same as the interval between the points iand (2, namely
(a2 — a1)? = (B2 — £1)? = (67)%. The conservation of circulation discussed in Sec. 14.3
implies that the calculation of circulation for the curve C: gives the same result as the
calculation for the curve Ca.

We can specify now the conditions under which the circulation is not changed
during the hydrodynamic evolution of the fluid. The total proper-time derivative
of (14.9) can be written as a sum of two terms

a 1 d y 1 , dox,

d—Tzﬁfc&—_(wu ) 63:,,+E£’wu et
The second term in (14.11) is connected with the change of the integration contour,
as determined by the flow, see Fig. 14.1. The Euler equation (13.17) gives

ac 1 o'P 1
= = or, + — w u” du,.
dr mJo n m Jo

The second term on the right-hand-side of Eq. (14.12) vanishes, since it contains
the term u”du, = 0. The first term on the right-hand-side of Eq. (14.12) vanishes
for each closed contour C if and only if

dP = nd®,q, (14.13)

where ®,. is an arbitrary, sufficiently smooth function of the space-time coordi-
nates. The equality of the mixed derivatives, 9%9P®.q = 0P0*® ), leads us to the

condition
€ _osse (laﬁp) Y (laaP> —0.
dr n n

The approach presented above shows strong similarities to the case of the clas-

(14.11)

(14.12)

(14.14)

sical, non-relativistic hydrodynamics. In the latter case, circulation is- defined by

the expression

(14.15)

C=?{ v-dl
c
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where v is the three-velocity field and C is a closed integration contour in space.
The non-relativistic circulation does not change in time if

dP = pd®., (14.16)

where p is the mass density. We note that the relativistic definition (14.9) is reduced
to the non-relativistic expression (14.15) in the limit w — m and v — 1. This is
the reason why we introduced the factor 1/m in Eq. (14.9). On the other hand, the
relativistic definition (14.10), valid for baryon-free matter, has no classical limit.

The conditions (14.13) and (14.16) are fulfilled if the flow is characterized by a
single thermodynamic parameter. In general, P,T,e are functions of two parame-
ters, see Eqs. (13.7) and (13.8). The constraints of the type T'(n,s) = const. or
n = const., which may be suitable in different physical situations, reduce the num-
ber of independent thermodynamic parameters to one. In such cases the circulation
is conserved.

14.3.1 Vortices in relativistic fluids

In Sec. 13.3.1 we showed that the relativistic Euler equation for the fluid with
non-zero baryon density may be written with the help of the three-vector notation
as

% (wyv) +V (wy) = v x (V X wyv) + %Vs. (14.17)

For the flow satisfying the condition s = const. it is convenient to introduce the
quantity )
Q =V xwyv. (14.18)

Calculating of the rotation of Eq. (14.17) gives

on
5 =V x(vx9). (14.19)

The equation of the same form appears in the classical hydrodynamics. It describes
the change in time of the rotation of the three-velocity

w=VxXv (14.20)

and has the form
Ow
ot
The form of Eqgs. (14.19) and (14.21) implies the following property: if Q or
w is zero in the whole space at a given time t(, then it remains zero for any later

=V (vXw). (14.21)
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Table 14.1 Comparison between classical and relativistic hydrodynamics of
the perfect fluid.

classical hydrodynamics relativistic hydrodynamics

mass (baryon-number) conservation

Il
B+V-(v)=0, p=%# LD 4v.-(nyv)=0, n=¥
adiabaticity
——n‘dzt =0, sm=% g—:-—-uﬂa,,,s:O, s=%

Euler equation

iv=-1lvp £ (wyv)=-2VP
circulation

C=¢§v-41 : C = § wutéz,
vorticity

w=Vxv Q =V Xxwyv

time £ > tp. If @ = 0 in a certain region of space, then there are no vortices in this
region and the circulation vanishes, namely

C’=f wyv-dl:/(wa'yv)da=/ﬂ'da=0. (14.22)
a4 A A

Here 0 A is the boundary of an arbitrary surface A inside the discussed region. Thus,
the correspondence of Egs. (14.19) and (14.21) indicates that € can be treated as
the relativistic generalization of the classical vorticity w. The comparison between
this and other quantities used in the classical and relativistic hydrodynamics of the
perfect fluid is presented in Table 14.1. :

14.4 Relativistic shock waves

During the hydrodynamic evolution, discontinuities of various physical quantities
(velocity, pressure, etc.) may occur. Surfaces where these quantities change sud-
denly are called surfaces of discontinuity. The conservation laws applied in the
neighborhood of these surfaces lead to the special matching conditions for the ten-
sors describing the fluid behavior. Usually such matching conditions are defined
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in the rest frame of the discontinuity (we discuss here only space-like discontinu-
ities) and one chooses a Lorentz frame where the 2-axis is along the normal to the
surface of discontinuity. With such a choice of the reference frame, the energy-
momentum conservation laws require that the energy and momentum fluxes should
be continuous, hence we obtain

wy up,l Ug,l = Wy ug,r Ug,r,

-2 -2
W uy, + P = W ug, + Fr,
w; Uyl Ug,l = Wy Uy,r Ug,r,
Wy Uz Ug,l = Wy Uz,r Ug,r- (14.23)

Here the indices | and 7 refer to the left and right sides of the discontinuity surface,
respectively, and @ = € + P is the enthalpy volume density. Similarly, the baryon
number conservation law yields

NUg,l = NrUg,r- (1424)

Generally, one distinguishes between two types of discontinuities. In the first
case Uz, = 0 and consequently uz; = Ugr = 0 and P, = P,. In this type of
discontinuities there is no energy flux across the surface. However, the tangential
components of the velocity and the thermodynamic variables other than pressure
may be discontinuous. Because of this behavior we call this type of the discontinuity
a tangential discontinuity or a contact discontinuity. In the second case uz ., # 0.
This type of the discontinuity is called a shock wave. The relativistic theory of
shock waves was initialized by Taub in 1948 [3] and then was developed by many
authors, for example, see Refs. [4-8].

Assuming uz , # 0 and dividing the last two equations in Eq. (14.23) by the
first equation we find that the tangential components of the velocity are continuous.
Therefore, we may restrict our considerations to the case uy = u, = 0. The second
equation in (14.23) and Eq. (14.24) lead to the formula

' P — P\ 2
J = Mg, = Nplg, =+ (‘;2 — Vr) (14.25)
where we have defined the specific volume
V= % = % (14.26)

In the next step we calculate the square of the first equation in (14.23) and eliminate
the velocities using Eq. (14.25). In this way we obtain the formula

w? — w? = (P — P,) (Vl - 1"4) . (14.27)

This relation is called the shock adiabat. It was first derived by Taub [3] and
represents a relativistic generalization of the Rankine-Hugoniot relation [1].
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Fig. 14.2 Creation of the Mach cone by a source moving with the velocity v.

The shock adiabat defines a curve representing thermodynamic states (Vr, P,)
in the (V, P) space which are related to the state (V;, P;). For a given value of Ug, 1
the solutions of Egs. (14.23) and (14.24) are given as the intersections of the shock
adiabat with the straight line defined by Eq. (14.25).

14.5 Mach cones

As we mentioned in Sec. 1.4, one of the most striking RHIC results is the obser-
vation of the jet quenching, i.e., the suppression of highly energetic particles. This
phenomenon suggests that the medium created at RHIC has very high density. On
the other hand, the large values of the elliptic flow suggest that the soft degrees
of freedom are thermalized very fast and the created system behaves like a perfect
fluid, see Sec. 2.5.2. These two observations taken together indicate that the energy
deposited by the jet into the system is also thermalized, absorbed by the fluid, and
its further behavior may be described as the propagation of the sound waves.

From the elementary physics we know that when a probe moves thrbugh a
medium with the velocity larger than the speed of sound, the energy deposited by
the probe forms a forward moving conical shock wave. The simple reason for this
behavior is the interference of the spherical sound waves created at the subsequent
points, where the energy is deposited to the medium by the moving particle. Simple
geometric arguments, see Fig. 14.2, give the formula connecting the cone angle,
®Mach, the sound velocity, cs, and the velocity of the jet, v ~ ¢,

Cs

COS PMach = ot (14.28)

The experimental observation of the Mach cone would be an important confirmation
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that the system produced at RHIC behaves like a fluid. Moreover, the measurement
of the cone angle gives us the information about the sound velocity and, indirectly,
about the equation of state of the produced matter.

The appearance of the Mach cones in low energy nuclear collisions was suggested
already in 1970s [9-11], however, they have not been observed. In agreement with
the expectations listed at the beginning of this Section, the RHIC physics brought
the evidence that the Mach cones may have been indeed formed [12]. The evidence
comes from the observation of a double peaked structure in two-particle correlations
on the away-side from the trigerred high-energy particle [13,14]. Nevertheless,
the more recent studies generated some skepticism, attributing the double peaked
structure to the method of subtraction of the background two-particle correlation
(ZYAM method). At the moment, the problem of creation of Mach cones in heavy-
jon collisions attracts much attention, for example, see Refs. [15-17].

14.6 Convective stability

During a hydrodynamic expansion, the particles in an accelerated fluid element
experience an inertial force in the direction opposite to the acceleration. In this
case, a convective instability, analogous to that in an atmosphere, is possible [18,19].
To derive the condition for convective stability we may first consider the case of the
static fluid placed in a uniform gravitational field. Suppose that the fluid element is
displaced adiabatically upwards (from height z to height z+ Az, with fixed entropy
per baryon, s = const., see Fig. 14.3). The convective stability requires that the
fluid element is heavier than the fluid it replaces, hence

gw(P',s) > gw(P,s). ’ (14.29)

-
N

z+Az 1+

Vit
——

7/
S~a-r'g W(P',s) g W(P,s’)

g w(P,s)

Fig. 14.3 Virtual displacement of the fluid element from height z to height z + Az. If the
condition (14.29) is satisfied, the fluid is stable against convection.
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Here we use the fact that in a relativistic fluid the gravity g couples to the enthalpy
density w = € + P. We also use the notation s’ = s(z + Az) and P’ = P(z + Az).
For small Az the stability conditions is
ow\ ds
—_— — < 0. 14.
g (Bs ) p dz (14.30)

Using the thermodynamic relation

where cp is the specific heat per net baryon at constant pressure, and the fact that
the specific heat is positive we obtain

Oe ds
g (a‘T)P = <0. (14.32)

For non-relativistic matter the energy density is replaced by the mass density p and
(0p/8T)p < 0. Thus, one obtains the standard condition for an atmosphere to be
stable, ds/dz > 0 (the entropy per particle increases with increasing altitude). To
generalize Eq. (14.32) to the case of an expanding fluid without gravity we replace,
according to the equivalence principle, the gravitational acceleration, —g3, by minus
the acceleration of the fluid element in its local rest frame (denoted below by primes)

Oe ds dv'
P

This formula may be rewritten in the explicitly Lorentz covariant way as

Oe |
"
<—8T)P a’9,s <0, ‘ (14.34)

where a* is the four-acceleration, a* = u*8,ut.

We note that the derivative (0e/8T)p vanishes in the case where the fluid has
zero net baryon number (or more generally does not have a composition degree of
freedom). It also vanishes in the case where the energy density is proportional to
the pressure. A gas of non-interacting massless particles is in neutral equilibrium
with respect to convention.
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Chapter 15

Initial Conditions and Freeze-Out

Similarly to other partial differential equations describing physical systems, the hy-
drodynamic equations should be supplied with the appropriate initial and boundary
conditions. The boundary conditions require that the energy density and other ther-
modynamic variables drop to zero at large distances from the collision center (from
the collision axis, if the boost-invariant systems are considered). On the other hand,
there is no obvious form of the initial conditions. The latter should be obtained from
the kinetic calculations, such as the parton cascades, but the microscopic processes
leading to local equilibrium are still poorly understood. In this situation one uses
simple parameterizations of the initial entropy or energy density profiles to start
the hydrodynamic evolution. In Sec. 15.1 we briefly review popular choices applied
in the ultra-relativistic heavy-ion physics.

The uncertainty of the initial conditions has its counterpart in the uncertainty
of the final conditions for the hydrodynamic evolution. By the final conditions
we understand the instructions when and where we should stop the hydrodynamic
expansion. This problem is closely related to the issue of modeling the freeze-out
stage. The most common prescription for switching from the hydrodynamic regime
to the hadron free-streaming stage is presented in Secs. 15.2 and 15.3. The final
Section of this Chapter introduces a very useful concept of the emission function.
It is used frequently in the studies of the correlation functions.

15.1 Initial conditions

15.1.1 Boost-invariant systems

For the boost-invariant systems with vanishing baryon chemical potential one usu-
ally assumes that either the initial entropy density, o;(x1) = (7, %), or the initial
energy density, €;(x1) = e(7;,x1), are directly related to the density of sources of
particle production, ps:(x1). The sources considered in this context are wounded
nucleons or binary collisions. The symmetry with respect to the Lorentz boosts
along the collision axis means that it is sufficient to consider all these quantities
in the plane z = 0. In general, a mixed model is used, see Eq. (3.59), with a lin-
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Fig. 15.1 The typical arrangement of the coordinate system in the transverse plane. The
impact vector, denoted by the dashed arrow, lies in the reaction plane along the z-axis,
b = (b,0). The center of the nucleus B has the coordinates (b/2,0), while the center of
the nucleus A is located at (—b/2,0). The position of the wounded nucleon is given by the
two-dimensional vector x. = (x,%). '

ear combination of the wounded-nucleon density W (x1) and the density of binary
collisions 7 (x ). This leads to the two popular choices: ’

oi(x1) X per(x1) = 1—;—"21_,0_()(_]_) + K7 (x1) (15.1)

or
gi(x1) X per(xL) = l;—’Eﬂ)‘(xl) +K7(xL). (15.2)

The wounded-nucleon and binary-collision densities in Egs. (15.1) and (15.2)
are obtained from the Glauber model discussed thoroughly in Chap. 3. In order to
obtain the average density of the wounded nucleons at the transverse position x| we
use Eq. (3.52). One has to be careful, however, to correctly interpret the geometric
meaning of the vector sp appearing in Eq. (3.52). Initially, in the calculations
presented in Sec. 3.5 the vectors sp denoted the positions of the nucleons in the
nucleus B with reference to the center of that nucleus, see Fig. 3.2. However, in
the second line of Eq. (3.49) a change of the integration variables is made which
effectively means that in the next equations sp denotes the positions of the nucleons
in the nucleus B with reference to the center of the nucleus A, see Fig. 15.1. Thus,
we may write

b
S = §+XJ_ : (15.3)

and find that the average density of the wounded nucleons in the nucleus B at the
transverse position x| is

@y (x.) = BTs (—'-;- +xJ_) {1 - [1 o Ta (1;- +xl>]A} . (154
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The calculation of the density of the wounded nucleons in the nucleus A is analogous
and yields

Ta (x1) = ATa (g +xl) {1 _ [1 o Ts (—; +xl)]3} . (155)

Therefore, for the collision of two nuclei, A + B, one may use the final expression
in the form

E(x_L) =Wy (X_L)-{-EB (XJ_). ) (15.6)
In the case of the binary collisions, similar geometrical considerations lead to the
formula,

n(x1) =0 ABTa (b +XL) Tg <—g— +X_L) . (15.7)

We recall that oy, in Egs. (15.4), (15.5), and (15.7) is the nucleon-nucleon inelastic
cross section.

In the hydrodynamic codes with zero baryon chemical potential, the initial con-
ditions may be specified for an arbitrary thermodynamic variable, not necessarily
for the entropy or energy density. The knowledge of the equation of state allows for
easy changes of those variables. For example, one may use the temperature as the
independent variable and assume the initial conditions in the form

Pse(X1)
| T(r,x1) =T, [al 2o (0) ] . | (15.8)
Here T;; (o) is the inverse function to the function ¢(T'), and o; is the initial entropy
at the center of the system. The initial central temperature T} equals T}, (01). Besides
the initial profile of one thermodynamic variable, one has to specify also the initial
transverse flow profile. In most cases, however, it is set equal to zero.

15.1.2 Non-boost-invariant systems

If the physical system is not boost-invariant, one prefers to use the coordinates 7 and
7| to parameterize its spacetime evolution rather than to stay with the Cartesian
coordinates ¢ and z. There are two main reasons for this choice: Firstly, if one uses
the Cartesian coordinates and the initial conditions are set at the given laboratory
time ¢ = ¢;, the thermalization process seems to be independent of rapidity. This is
in contrast with the natural expectations that the thermalization of fast particles
should be delayed by the time dilation effects. Secondly, the use of the coordinates
7 and 7)) is convenient from the numerical point of view [1].

Thus, the initial conditions for non-boost-invariant systems should specify the
entropy/energy density and the longitudinal fluid rapidity as functions of z, y and
n) for a fixed proper time 7 = 7;. The natural generalization of Egs. (15.1) and
(15.2) are the formulas

oi(x1,m)) o< H (17“ nuh(m y)) [—2— W(XL)+ KT (x_L)] (15.9)
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Fig. 15.2 The function H(n) defined by Eq. (15.11) with Any =2 and én = 1.

and
sh 1-k_ =
ei(x1,m) oc H (17” -y (@, y)) —5— (x )+ &m(x1)]|- (15.10)
The function H defines the longitudinal profile of the entropy/energy density. It
may be taken in the form [2]
(Imy| — Amy)?

H(n)) = exp [— 206 )2 9(!nn|—Anu)], (15.11)

where 6 is the step function, the parameter Any defines the half width of the initial
plateau in spacetime rapidity, and 7 defines the half width of the Gaussian tails on
both sides of the plateau, see Fig. 15.2. By the appropriate changes of the param-
eters A7 and 07 we may vary between the boost-invariant-like and Gaussian-like
initial conditions. ‘

The most popular choice for the initial fluid rapidity is that it is equal to space-
time rapidity, namely

&y (75, 2, 9,my) = 7 (15.12)
Correspondingly, the transverse fluid rapidity is set equal to zero,
d1(n,z,y,m)) =0. (15.13)

We note that during the hydrodynamic evolution, due to the action of the longitu-
dinal and transverse pressures, the flow rapidities increase. Thus we have ¥ > 7
and ¥, >0 for 7 > 7.

The quantity nﬁh in Eq. (15.9) describes a shift in the spacetime rapidity of
matter due to the difference of the momenta of the nucleons in the projectile and
target. It is given by the expression [2, 3]

1, (WA +Tp + Vproi(Wa —
77ls'ih:§1n("‘“A*’1"‘5’“""”(“’*‘ wB)) (15.14)

Wa +WB — ’Upmj(ﬁA — _@B)

where vpyo; is the velocity of the projectile in the center-of-mass frame.
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15.2 Freeze-out

As the hadronic fireball formed in ultra-relativistic heavy-ion collisions expands, its
density decreases and the mean free path of particles increases. Eventually, this
process leads to the decoupling of hadrons which become non-interacting objects
traveling freely to detectors. Since after this stage the momenta of particles do
not change anymore !, we refer to the decoupling mechanism as to the thermal
freeze-out process (the momenta of particles become frozen). Besides the decrease
of density also the growing rate of the collective expansion favors the process of
decoupling. If the expansion rate is much larger than the scattering rate, the freeze-
out may happen even at relatively large densities. Generally speaking, the process
of decoupling is a complicated non-equilibrium process which should be studied with
the help of the kinetic equations. In particular, different processes and/or different
types of particles may decouple at different times, thus one introduces very often
the hierarchy of different freeze-outs — see our discussion in Secs. 4.4 and 4.5 where
a distinction between the chemical and thermal freeze-out was made.

In many practical applications simple criteria for decoupling/freeze-out are ap-
plied. The most popular criterion for the thermal freeze-out uses the concept of the
fixed final temperature T;. When the local temperature drops to Tt all kinds of the
processes in the fluid element stop. This condition may be very easily adopted in the
hydrodynamic description of the evolution of matter formed in heavy-ion collisions.
In fact, this is the reason'why we discuss the freeze-out in the Chapter devoted to
the relativistic hydrodynamics. The condition T' = T} defines a three-dimensional
hypersurface in the Minkowski space. From the hydrodynamic calculation we know
the values of the other thermodynamic parameters and flow on this hypersurface.
This information allows us to calculate many interesting observables and compare
them with the existing data. The appropriate formahsm is based on the Cooper-
Frye formula discussed below in Sec. 15.3. '

The more realistic treatment of the freeze-out may be achieved if the hydro-
dynamic description is combined with the transport model. In this case the hy-
drodynamical fields are mapped to hadron distributions and typically the UrQMD
simulations are performed to describe freeze-out in the dynamic way [4-8]. Inter-
estingly, this mapping is also done with the help of the Cooper-Frye formula, which
in this case defines a “switching hypersurface” between the hydrodynamic regime
and the hadron kinetic regime. !

If the freeze-out process is very fast, the emitted particles carry information
about their earlier thermal distributions. Thus the observation of hadrons may
bring us information about the thermodynamic conditions of matter in the late
stages just before the thermal freeze-out. This kind of phenomenon is similar to the
decoupling of the microwave radiation in the Early Universe.

'In more detailed analysis one should include the weak decays of certain particles.
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15.3 Cooper-Frye formula

The number of particles that decouple in a small volume dV and have an equilibrium
distribution feq(E,) at freeze-out is given by the standard expression

dN =4V / d®pfeq(Ep)- (15.15)

The problem exists, however, that this equation is valid in the rest frame of the fluid
element. We have to generalize it in such a way that we may add distributions from
different fluid elements that move independently. The first step in this direction is
to write the previous formula in the covariant way [9]

d3
dN = dV, / p"Epgfeq(p ). (15.16)

Here u* is the four-velocity of the fluid element and dV# = dVwu#. Clearly, in
the rest frame of the fluid element u# = (1,0,0,0) and Eq. (15.16) is reduced
to Eq. (15.15). The total number of particles, emitted from all fluid elements, is
obtained by integration over the volume elements dV*. Since dV* and u* depend
on the spacetime position x, we obtain

N = / dV,(z) / p %feq (p-u(z)). (15.17)

In order to find the final answer to our problem of determining the distribution
of particles emitted at the thermal freeze-out one important modification should
be still done. It turns out that the freeze-out volume elements cannot be generally
written in the form dV# = dVu*. For example, at the early stages of the collisions
many particles are emitted from the edge of the system. This emission has a surface
character and the appropriate “fluid element” is obtained by the multiplication of
the area of the emission region by the time this emission takes. In this case dV*
is space-like. Thus, the final formula that we seek has the structure of Eq. (15.17)
but the fluid element dV#(z) should be taken as independent of u*(z). The form
of dV#(z) should follow from the model/theory used to describe the spacetime
evolution of matter.

With these remarks in mind we write the expression for the number of particles
N which decouple on the freeze-out hypersurface ¥ in the form

3
N= [FE [ auww s (15.18)

This is the famous Cooper-Frye formula [10] used in the hydrodynamic codes. The

three-dimensional element of the freeze-out hypersurface, dX*, replaced here the

fluid element dV moving with the four-velocity u¥. The quantity dX* may be

calculated with the help of the formula known from the differential geometry [11]
dz® dxP dx”

—dadfdy, (15.19)

d¥, = 5/Laﬁ7ﬁw dy
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Fig. 15.3 Parameterization of the freeze-out hypersurface. The part (a) shows the view
in the = — y plane with the fixed values of ¢ and 7. The part (b) represents the view in
the 7 — r plane with the fixed values of ¢ and -

where €,qpy is the Levi-Civita tensor and the parameters o, B, and v are used
to parameterize the three-dimensional freeze-out manifold in the four-dimensional
Minkowski space. Similarly to the three-dimensional case, d£* may be interpreted
as the four-vector that is perpendicular to the hypersurface and its norm is equal
to the “volume element” of the hypersurface. :

Equation (15.19) defines the components of the four-vector d£* in terms of
three-dimensional determinants (we adopt the convention eg195 = +1):

d¥? =dyg = SOiij—i%%j%dadﬁd'y = %dadﬂw

dy! = —d%; = —elaﬂﬂ,czc—aa%?;g;—vdadﬂdfy = %dadﬁd%

d¥? = —dy, = —egam%%d—;’;dadﬁd'y = —%mdﬂm,

d¥3 = —d¥s = —Egaﬂ,},-‘?—aa%%’?dadﬂd’y = %—Zdadﬁdfy. (15.20)

Here we introduced the short-hand notation for the determinants,

9z 9z Oz
doa. 98 By

@,y,2) _|oy oy oy
Bafy) | o o 15.21)

9z 0z Oz
da ap oy
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Most of the three-dimensional freeze-out hypersurfaces that come out from the
hydrodynamic calculations may be parameterized in the following way

t= [Tj +d (¢,§,n“) sinC] coshn,

z= [Ti +d (¢, ¢, n”) sinC] sinh 7,

x:d(¢,§,n”)cos§ cos @, ’
y =d(¢,¢,m) cos sing. (15.22)

Here ¢ is the azimuthal angle in the y —z plane, whereas 7 is the spacetime rapidity
1 t + 2z -1 z
=St =tanh ™" (2). 15.23
gl 2 . t—2z o t ( )

Equations (15.22) lead to the compact formulas for the longitudinal proper time 7
and the transverse distance r,

T—Ti=Vt2—22 -1, = d(¢,<,n||) sin ¢,
r =2+ y2 = d(¢,{n))cos(. (15.24)

The parameter 7; is the initial proper time — the value of 7 when the initial con-
ditions for the hydrodynamic evolution are specified.

For fixed ¢ and 7 the quantity d (¢, ¢, n”) is the distance between the hypersur-
face point with coordinates (¢, {,7)) and the spacetime point (7 = 73,z = 0,y = 0),
see Fig. 15.3. The variable (, restricted to the range 0 < { < 7/2, is an angle in the
7 — r space. We have introduced the angle { because in most cases the freeze-out
curves in the 7 — r plane may be treated as functions of this parameter. The use
of the transverse distance r is inconvenient, since very often two freeze-out points
correspond to one value of r.

Clearly, the three variables ¢, 7, and ¢ may be regarded as the special choice
of the parameters «, 3, and v used in Eqgs. (15.19)—(15.21). If the function d is
independent of ¢, the freeze-out hypersurface is cylindrically symmetric. Similarly,
if d is independent of 7, the freeze-out hypersurface is boost-invariant. The cylin-
drically symmetric and boost-invariant freeze-out hypersurfaces are defined by the
function d depending solely on the variable ¢. The substitution of the parameteri-
zation (15.22) in Eq. (15.20) gives

d¥0 =d cos¢ [(ﬂ + dsin () (d sin{ — g‘zl cos() coshny + c’?Td sinhn“] ,
I
d¥! = —d (1; + d sin () [(d cos¢ + g—g sing) cos( cos ¢ + g—g singb] ,
(15.25)

d¥? = —d (1; +d sin () [(d cos( + %g— sin() cos(sin ¢ + g—g cosqﬁ] ,

d¥3 =d cos¢ [(7’1 +dsin() (d sin¢ — g—g cosC) sinhn + g}—‘z coshn”} .
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With Egs. (15.25) and the standard definition of the four-momentum expressed in
terms of the rapidity and transverse momentum,

p* = (m coshy,p, cos ®p,pL sindp, my sinhy), (15.26)

where m; = /m? + pz is the transverse mass, we find the explicit form of the
Cooper-Frye integration measure [10]

d¥, p* = d (7 +d sin() [d cos ¢ (m. sin cosh () —y) + p. cos cos (¢ — #))
+ 'g? cos ¢ (=m. cos ¢ cosh (1) —y) +pL sin cos (4 — ¢p))

(9(,‘13 pysin (¢ — ¢p) + (Tl m__cot ( sinh (77” )] dn) ded(. (15.27)

For boost-invariant systems the function d depends only on ¢ and ¢. The term
0d/0n may be omitted in this case and the Cooper-Frye formula leads to the
six-dimensional particle distribution at the thermal freeze-out

dN
dyd¢pp 1dp, dnydgd(¢

(2 E d (i + d sin() [dcos( (m sinCcosh (g —y) + p. cos cos (¢ — ¢p))
gC cos ¢ (—m_ cos( cosh (m) —y) +p1sin¢cos(¢p— ¢p)) (15.28)

+ %pl sin (¢ — ¢p)]

-1
X {exp [J—lﬁf—v{ (m cosh(y —ny) — pLvy cos(¢p + a — ¢p)) —ﬂ,u} + 1} :

The formulas derived in this Section will be used frequently in the next Chapters,
in particular in Chap. 24, where different freeze-out geometries are analyzed.

The momentum distribution following from Eq. (15.18) has the form

dN dN
B = - “”
Pddp — dydp, / 2 (@)p" f(z.p) (15.29)

For the systems of particles which are in local thermodynamic equilibrium we have

Ep d3 / d3,,(2) P* feq (p* ua(2)) , (15.30)
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where the function feq is the equilibrium distribution function

feq (P% Ua) = (271r)3 [exp (pa u;_ 'u) - e] - . (15.31)

Here, as always, the case ¢ = —1(+1) corresponds to the Fermi-Dirac (Bose-
Einstein) statistics, and the limit € — 0 yields the classical (Boltzmann) statistics,
see Eq. (8.46) in Sec. 8.7.

15.3.1 Space-like emission

In the transition from Eq. (15.17) to (15.18) we argued that the freeze-out hyper-
surface contains the space-like parts, see Fig. 15.4 — we use the convention that
in the space-like (time-like) region the vector normal to the freeze-out hypersur-
face is space-like (time-like). Now, we want to emphasize that the treatment of the
space-like parts might lead to conceptual problems since particles emitted from such
regions of the hypersurface enter again the system and the hydrodynamic descrip-
tion of such regions (combined with the use of the Cooper-Frye formula) becomes
inadequate. Recently much work has been done to develop a consistent descrip-
tion of the freeze-out process from the space-like parts [12-21]. At the same time,
quantitative arguments have been also presented [6] that the “wrong” contribu-
tions from the space-like parts are very small and may be neglected in the realistic
hydrodynamic calculations.

To see the last point we have to comsider the covariant form of the
distribution function. For the particles going outwards we have a factor

Fig. 15.4 A priori possible, different freeze-out curves in Minkowski ¢ — r space (for some fixed
azimuthal angle ¢). The dotted and dashed lines describe the cases where both the space-like
and time-like parts are present. The solid lines describe the cases where only the time-like part is
present.




ed
ike
; is

Initial Conditions and Freeze-Out 237

exp(—Epy/T +p1v1y/T), whereas for the particles going inwards the momen-
tum changes sign and we have exp(—E,vy/T — p1v1v/T). Hence, the ratio of the
“in” and “out” contributions behaves like exp(—2p v, y/T). For p; ~ 400 MeV,
vy ~ 0.5, and T' ~ 130 MeV one finds exp(—2p v, v/T) ~ 0.03. Clearly, if the
strong radial flow is present at freeze-out, the emitted particles pick up some part
of the momentum of the fluid element and move outwards. The problems with the
inward emission may appear, however, if the flow is not strong and/or the freeze-out
hypersurface bends to the origin of the coordinate system, as the dotted curve in

Fig. 15.4.

15.4 Emis’sion function

Equation (15.29) suggests the introduction of the concept of the emission function
(sometimes also called the source function),

S(e,p) = [ 2P 80 - D)@' ), (15.32)

The physical interpretation of the emission function is very straightforward — it
gives the distribution of the spacetime positions and momenta, of the emitted parti-
cles. In other words, the emission function gives the number of the particles emitted
in the phase-space element A3z A3p per unit time (in order to obtain the Lorentz
invariant quantity this ratio is also multiplied by the energy of the emitted particles)

AN

=E,———F. 15.33
S(Zl?,p) pAtA3a:A3p ( 5 )
The integration of the emission function over time and space yields the invariant

momentum distribution

dN ,
Cdydip, / d'z S(z,p) = / dEn(rw)p f(=z,p). (15.34)

The concept of the emission function turns out to be very useful in modeling of
the physical conditions at freeze-out (in quite general situations not restricted to
the hydrodynamic picture used in this Section). The emission function is used to
calculate not only the particle spectra but to study other physical observables such
as, for example, the HBT correlation radii. In this case one calculates the Fourier
transform defined by the expression

S(k,q) = f d*ze'® S(x,k) = / d%,(z) k* €7 f(z, k). (15.35)
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Chapter 16

Exercises to PART IV

Exercise 16.1. Sound velocity:
i) Starting from the standard definition of the sound velocity,

oP
2 _ [ =—

A= ( o )s, (16.1)
check that it is equivalent to Eq. (13.25). ii) Show that for an adiabatic transfor-
mation one has

oP c2n?
— | =-——= <0, 16.2
(av)s 1-¢ ~ (162

where V = w/n. iii) Derive the low temperature limit of the sound velocity of the
massive pion gas

T

Exercise 16.2. Relativistic hydrodynamic equations in the non-relativistic three-
vector notation.

Show that the relativistic Euler equation (13.33) may be written in the form given
by Eq. (13.34), ‘

% (wyv) + V (wy) =v x (V x wyv) + %Vs. (16.4)
Similarly, show that Eq. (13.40) is equivalent to (13.41),
a 7
En (Tyv)+V (Ty) =v x (V x Tyv). (16.5)

Exercise 16.3. One-dimensional relativistic hydrodynamic equations and the light-
cone variables.
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i) Show that the one-dimensional relativistic hydrodynamic equations (13.16) with
the energy-momentum tensor ( 13.15) where ¢ = 3P may be written in the form

Oe d (ee=2%)
Oz, +,2 5z =0

Oe 0 (e€?%) .
ey SR (16.6)

where x4+ are the light cones variables,

xi=:t:°:|::c3=t:!:z,

and the parameter ¥ is defined by the relations

u® = cosh 9,u% = sinh ¥
(note that u! = u? = 0 for the pure longitudinal expansion). ii) Prove that Egs.
(16.6) are equivalent to the equations

¥ : .

Olne Olne o9
g + sinh 29 5 +4£ =0,
dlne oY
ER -‘45 =0. (16.7)

(cosh 29 + 2)

sinh 299 % + (cosh 20 — 2)

iii) Show also that for the one-dimensional longitudinal expansion Egs. (13.71) and
(13.72), derived by us in Chap. 13, are equivalent to Eqs. (16.6) and (16.7). Hint:
Use the substitutions: v, = tanh 9, dlne =4dInT, dlno = 3dInT.

Exercise 16.4. Hydrodynamic potential ® (Baym’s formalism).
Starting from the definition of the temperature dependent sound velocity

0= 5[ =3 ()| ues

where T and n are parameters, integrate Eq. (13.84) and show that the following
relations hold:

_ V3 (T/To)*
er(T) =5 n 7 2(T;T0)2”

1
/ 2n
1@(@) = ZO [623%1’ + / 62\/%1, +e%‘:] . lJ

and
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a = tana

Tf

Ti pe max

Y

Fig. 16.1 Parameterization of the freeze-out curve (the projection of the freeze-out hyper-
surface on the 7 — r plane) considered in Ex. 16.6.

Exercise 16.5. Rapidity dependent initial conditions.
Derive Eq. (15.14).

Exercise 16.6. Freeze-out hypersurface.

i) Consider the cylindrically symmetric and boost-invariant freeze-out hypersurface
X, In the case where the freeze-out takes place at the fixed proper time, 7 = 7,
we have

dQ) =" R, r=dlQ) cosc
Use Eq. (15.27) and replace the integration variable ¢ by r . Show that the inte-

gration measure in the Cooper-Frye formula equals

dX,p" = rry'my cosh(y — ny) dny dr dé. (16.9)
Note that the change of the integration range from (pin < ¢ < 7/2t0 0 <71 < rpax
introduces an extra change of sign.

ii) Generalize the previous case to the freeze-out defined by the condition 7 =
7t + ar, see Fig. 16.1. In this case

d(¢) =

— Ti

sin C —acos(
and

dS,p* =r (15 +ar) [mL cosh(y — n)) — apy cos(¢ — ¢p)] dnydrdé.  (16.10)
Of course, in the simple cases considered in this Exercise, the parameterization with
the help of the variable r is much more convenient than the parameterization using
¢. This is not the case for more complicated freeze-out hypersurfaces obtained from
the hydrodynamical calculations, where different freeze-out points may correspond
to the same value of r (with fixed ¢ and 7).
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Chapter 17

Pion Correlation Functions

The correlations between identical pions have different physical reasons: i) con-
servation laws, ii) specific features of the production mechanism and final state
interactions, and iii) Bose-Einstein statistics [1].

The correlations due to the conservation laws are of the two types — the energy-
momentum conservation leads to the kinematical constraints while the conservation
of quantum numbers such as isospin leads to the correlation between the numbers
of different types of pions prbduced in a given reaction. The typical example of
the correlation induced by the production mechanism is the momentum correlation
caused by the resonance production — more than one half of pions produced in
the ultra-relativistic heavy-ion collisions comes from the resonance decays. On the
other hand, the typical correlation induced by the final state interactions is that
caused by the long-range Coulomb interaction. The last source of the correlations
listed above is the Bose-Einstein statistics. This is an effect connected with the
required symmetrization of the one-particle pion wave functions.

Because the available phase space for pion production in ultra-relativistic heavy-
ion collisions is very large (hundreds or even thousands of pions are produced in
the typical heavy-ion collision) the correlations induced by the conservation laws
are negligible. On the contrary, the correlations due to the resonance decays and
Coulomb repulsion are substantial and should be always taken into account together
with the statistical effects. In most cases we are interested in extracting the corre-
lation effects caused by the Bose-Einstein statistics, hence, the experimental data
are frequently corrected for the Coulomb interaction. Of course, the data cannot
be corrected for all possible effects and the study of correlations involves always a
detailed comparison of the specific model predictions with the data.

The study of the pion correlations, especially those due to the Bose-Einstein
statistics, is also known as pion interferometry, pion femtoscopy, or HBT analysis.
The last term emphasizes the analogy to the well known techﬁique of second order
intensity interferometry developed by Hanbury-Brown and Twiss (HBT) [2,3] to
measure stellar angular sizes !. In high-energy physics, the ideas of pion interfer-

1This analogy is sometimes misunderstood and the momentum correlations are confused with
the spacetime HBT correlations. Although the two types of the correlations have the common
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ometry were used to deduce the space-time structure of the interaction regions [7-9].
Experimentally, pion interferometry was first used by Goldhaber, Goldhaber, Lee,
and Pais in Ref. [10] to determine the size of the pion production region in pp
collisions. That is why the increase of the correlation function for small relative
momenta is sometimes called the GGLP effect.

In this Chapter we introduce the main concepts used in the studies of identical
particle correlations. In particular, we present in more detail the most popular
framework used to study and interpret the pion HBT data. This framework is
based on the assumption that the emission function may be well approximated by
the Gaussian shape.

17.1 General definitions

17.1.1 Connection to inclusive. distributions

Let us start with the introduction of the general concepts concerning the pion
interferometry. The central object discussed in this context is the pion correlation
function defined as the inclusive two-particle distribution P, (p1, p2) divided by the
product of the inclusive one-particle distributions P;(p), namely

P2(p1,P2)
P1(pP1)P1(p2)’

Here p; and p2 are the three-momenta of the two pions. The one- and two-particle
distributions in Eq. (17.1) correspond to the single and double inclusive cross sec-
tions. For example, in the case of the positive pions we may write

C(p1,p2) = (17.1)

Clp1,p2) = OtotdTinct (T T) /d3p1d3py
’ (doinc(mt)/d3p1)(doina(nt)/d3ps)’

(17.2)

where oy is the total cross section (see our discussion of the inclusive cross sec-
tions in Sec. 30.5, compare also Eq. (3.60) in Sec. 3.8). Equation (17.2) gives the
straightforward prescription for the experimental determination of the 7+ 7+ corre-
lation function.

17.1.2 Connection to density matriz

The one-particle and two-particle pion distribution functions may be expressed as
the expectation values of the products of the pion creation and annihilation opera-

quantum statistical origin, the momentum correlations of identical particles yield the spacetime
picture of the source, whereas the spacetime HBT correlations (dependence of the number of
coincident two-photon counts on the distance between two detectors) provide the information on
the characteristic relative three-momenta of emitted photons, which gives the angular size of a
star without the knowledge of its radius and lifetime [4-6].




W s

[CB~T]

Pion Correlation Functions 247

tors in a multiparticle state denoted in the following by the brackets (...),

dN edn
P1(p) = Ep—— = Ep(aap), (17.3)
d°p
dN A+ A+ A ~
Pa(p1,P2) = Ep, Ep, d3p1d3ps = Ep, Ep, (apl apzapzap1>' (17.4)

If the Wick theorem can be applied, i.e., if we may make use of the relation
(dgl d;} &Pz a"Pl ) = (dgl dpl > (a';g a’Pz) + <&;1 a’Pz > (a’;z &Pl ) ) ' (17'5)
then the correlation function may be rewritten in the form

lp(p1, p2)|
p(P1,P1)p(P2, P2)’ (17.6)

C(p1,p2) =1+

where the quantity

p(pl, p2) =V Epl Epz <a'1-'3_1 a’Pz) (17'7)

is the density matrix.

17.1.3 Very simple model

The effect of the Bose statistics on the correlation function may be illustrated in a
very simple model including the symmetrization of the pion wave function. Let us
assume that pions are produced at points x; and x2 which are randomly distributed
in space. The distribution of the points is given by the density distribution p(x).
The two-particle distribution of identical pions with momenta p; and p2 is given
by the expression

P2(p1, P2) =/d3$1d3$2P(X1)P(X2)|‘1’12]2a (17.8)

where W15 is the wave function

Uyq eipl'x1+iP2'x2 + ei p1-x2+ip2-x1) . (179)

— 1 (
- V2(2n)?

The second term arises from the symmetrization required by the Bose-Einstein
statistics. To proceed further we introduce the relative momentum

q=P1 — P2, (17.10)

and the center-of-mass momentum

1
k=5 (p1+Pp2). (17.11)
Using these variables we find
1 . . )

U0 = ezk-(x1+X2) [ezq-(xl—xz)/2 + e——zq-(xl——xz)/2:| 17.12
= T (17.12)
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and the simple calculation yields

A3z, d3z | i (xi—
PQ(pl;p2) = wzﬁ;p(xl)p(x2) [1 + 5 (e q (xl xz) + e ’Lq( 1 X2))] .
(17.13)
The one-particle distribution is obtained in the similar way
. 2 .
etPx de
Pi(p) = /dsﬁp(x) W Wp(x). (17.14)

The fact that this distribution is independent of momentum reflects here the un-
certainty relation — particles are produced in well defined places x, hence their
momenta are uniformly distributed. From the definition of the correlation function
we obtain

| [ d3ze q"‘p(x)lz
2
[f 3zp(x)]
For very small values of q, the correlation function increases to 2, which is the
GGLP effect.

Ck,q) =1+ (17.15)

17.1.4 Connection to emission function

The essential problem of the model introduced in Sec. 17.1.3 is that it does not
include the time dependence of the pion source. Such dependence was introduced by
Kopylov and Podgoretsky [7,8] who used the Klein-Gordon equation in the presence
of several chaotic source currents to argue that the correlation function measures
not only the space but also the time Fourier transform of the source distribution
function depending generally on the spacetime coordinates # and x. This concept
may be realized by a simple relation between the density matrix and the emission
function, namely by the ansatz

1 1 .
p(P1,P2) = p (k +5ak— -2-q) = /d4x exp(ig- z)S(z, k).  (17.16)

The relative and average (center-of-mass) momenta q and k were defined by Egs.
(17.10) and (17.11), respectively. The generalization to the full spacetime integrals
requires that we have to define also the temporal components of the four-vectors
a=(¢% q) and k = (k% k). In most of the practical applications one assumes that
particles are on the mass shell, which leads in the natural way to the definitions

¢ = By — Epy = /m2 + % - \/m2 + 2 (17.17)

and

1 1
=3 Bt B = (Vi est e fndesd ). arag)
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The mass-shell constraints also yield the condition

1 1 1
¢k=3 (p1 —p2) - (p1 +p2) = 3 (P} —p3) = 3 (m2 —m2) =0, (17.19)
which can be used to eliminate ¢°, namely
k-
PL=-3=p5.q (17.20)

where 3 describes the velocity of a pair.
In Sec. 15.4 we showed that the momentum distribution of pions is simply the
space-time integral of the emission function
Vo = o = p(b.p) = [ ateS(a). (17.21)
Similarly, we obtain the compact expression for the correlation function in terms of
the emission function 2

|[ d*z e S (z, k)|2
Jd*zS(z,k + 3q) [ d*y S(y, k- 3q)
Very often the g-dependence of the denominator on the right-hand-side of

Eq. (17.22) is rather weak, so we may use the so called smoothness approxima-
tion ‘

Ck,q) =1+

(17.22)

s (m,k + %q) s (y,k - %q) ~ S (2,K) S (1,K) . (17.23)

As long as this approximation is valid, the correlation function mayr be reduced to
the form

|/ d*z et S(z, k)|

[fd4$S(x,k)]2 .
The differences coming from the usage of Eq. (17.24) instead of Eq. (17.22) are
illustrated in Ex. 18.2, where the Zajc model is discussed [11]. Equation (17.24)
suggests a simple interpretation — the correlation function is the Fourier transform

of the emission function. Thus, the range of the correlation function is related to
the space-time extensions of the emitting source.

Cka) =1+ (17.24)

17.2 Gaussian parametrization

In this Section, following Wiedemann and Heinz [12], we consider a Gaussian
parametrization of the emission function

S(z,k) = N'(k) exp —%N“(k)BW(k)?v'"(k) : (17.25)

2We use the same letter to denote the correlation function in the (p1, p2) space and the correlation
function in the (k, q) space. The use of the appropriate arguments follows from the mathematical
context.
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Here N (k) is an arbitrary normalization, and the coordinates Z#(k) are deviations
from the mean values ZT#(k),

4 (k) =2 — T# (k). (17.26)

The formula (17.25) was frequently used to construct the framework for the inter-
pretation of the correlation data, see for example Refs. [13-17] which we follow here
in our discussion.

Without the loss of generality we may assume that the coefficients B, (k) form
a symmetric matrix B, namely By, (k) = B,, (k). This property follows from the
fact that any antisymmetric part of By, (k) does not contribute to the symmetric
sum over y and v in Eq. (17.25). The symmetric matrix B may be diagonalized
with the help of the transformation

B=RDRT, (17.27)

where R is an orthogonal matrix satisfying the condition RRT = RTR = 1 and the
matrix D has only diagonal elements (they are eigenvalues of the matrix B). The
orthogonality of R implies that det R = 41 and det B = det D. We exclude the
possibility that the matrix R represents the reflection, hence we consider only the
cases with det R = +1.

The diagonalization of the matrix B is the technical way which allows us to
calculate the correlation function corresponding to the emission function (17.25).
Because we consider four-dimensional rotations rather than Lorentz transformations
in the diagonalization procedure, it is useful to switch from the covariant notation
to the standard matrix notation. This is done by the replacements of the type

B;w — B, B;wlz — (B—l)lw, Juv = Gmn,
zh — Ty, ip, = ImnTn, GaT® = ¢ Ty Gab, (1728)

where the objects with latin indices are four by four matrices or vectors. Using the
substitution rules (17.28) Eq. (17.27) may be written in the form

Bpn = Rps D RE, (17.29)
thus the argument of the exponent in Eq. (17.25) includes the term
TmBms Dgr RL &,. (17.30)

The summation over the identical indices is understood here. We also note that
we do not distinguish between the upper and lower latin indices. The expression
(17.30) is simplified if one introduces the vectors y defined by the formula

Yr = RT Zp = TnR py. (17.31)

The inverse transformation to Eq. (17.31) is Ts = Ry, = yrRT;s. Since the matrix
D is diagonal we obtain the desired result

3
ZmRms Dr Ry, & = yYsDoryr = 3 Drytf2. (17.32)
r=0
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We are now ready to calculate the space-time integral of the emission function,

/ dta S(z, k) = N (K) / iz exp [—%”‘(k) By (K) 5"(1{)] . (17.33)

This quantity gives us directly the momentum spectrum of pions. Changing the
integration variables from x to y we obtain a product of the Gaussian integrals

which can be easily done
ozt
t
de ( dy” )

(2m)?
v/Doo(k)D11 (k) Doz (k) D33 (k)
_ (2m)?

=N V/det Bk))’

Here we used the property that the determinants of the matrices B and D are equal.
We note that |det(dz*/0y)| is the absolute value of the Jacobian determinant,
which equals unity in this case since | det(8z#/0y”)| = |det R|.

The off-diagonal elements of the density matrix, necessary to determine the
correlation function, may be calculated from Eq. (17.16)

/d4a:S(a:,k) =N(k)/d4y

3
1
exp [_5 z Drryg}

r=0

= N(k)

(17.34)

p(k+1iq,k—1q) =N (k) [ d*zexp |igaz®™ — lE"(k)B;w(k)-'75V(k) . (17.35)
2

Introducing the matrix notation (17.28) we rewrite the right-hand-side of the last
equation in the form

T 3 3
N (k) exp [igaZ™ (k)] / d*Texp (i rTrgrr — %ZDrry?] . (17:36)
r=0

L r=0

Changing the integration variable from T to y we rewrite this result as

© 3
N (k) exp [igoZT" (k)] /d4y exp Z (—-;—Dmnyf + ic,«yr)] , (17.37)

L r=0

where ¢, = Zi:o gsgssRsr. By completing the square

!
2

and performing the y-integration we find

1 21
Dr'r‘yg + ’l:cfryr = —§D7~r (y'r — ’LDi) — ECTD,;T.ICT (1738)
rr

3
(2m)? exp [—% > ch;,lcr]

r=0

v/det B(k)

p(k+ 3a,k — 3a) = N(k) exp [igaT* (k)]

(17.39)
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Using now the explicit form of the vectors ¢, we obtain

3 3
ZCT’D';,}C’I‘ = Z qsgssRsr-Dr_'rIthtthr
r=0

7,8,t=0

3
= Z QSgssRer:rl Rz;gttqt

r,8,t=0

3
= Y 4s9ssB5 guuae

s,t=0

= q(,(B_l)‘”'q.,.. (17.40)

In the last line we came back to the covariant notation, see Eq. (17.28). Putting
the last two equations together we find

(27)% exp [~1qu(B~1)*q, ]

v/det B(k)

p(k+ 30,k - 3a) = N (k) exp [igaT* (k)]

(17.41)

If the smoothness approximation (17.23) is valid, which is formally expressed by
the condition

N2 (k) det(B(k + a/2)) det(Bk —q/2)1*

N(k+aq/2)N(k -q/2) [ det(B(k)) det(B(k)) ] w1 g

the correlation function (17.24) corresponding to our Gaussian ansatz attains the
simple form '

C(k,q) =1+ exp [—gu(B~1)* (k) @] - (17.43)

17.2.1 Mass-shell projection

Equation (17.43) may be rewritten in a form which explicitly uses the mass-shell
condition (17.20). To do so, we first introduce a concept of averaging with the
emission function S(z,k) [13-17]. For f(z,k) being an arbitrary function of the
space-time coordinates z and the three-momentum k, the average value of f is
defined as

J d*z f(z,k) S(z, k)

(k)= T d 5@,k (17.44)
Going through the computational steps familiar from the previous Section we find
(@iuﬂk) = <5’5V~'Eu>(k) = (B_l)/w(k) (17~45)

and

C (k@) = 1+ exp[—q" ¢* (3,5,) (k)] (17.46)

re

1
t
I
¢
c
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With the help of the mass-shell condition (17.20) we obtain

¢* ¢" (8,3,) (k) = Z ¢d [ (E8) + (& &) - 267 (t5")] (k)

’J 1
3
= > ¢¢ [BFFh) + & &) - F(EE) - B1E )] (k)
i,j=1 ,
3
= 2 4@ - FHE - 5D) (k). (17.47)

Substituting Eq. (17.47) into Eq. (17.46) yields an equivalent form of the correlation
function, namely ,

C(k,q) =1+exp [— > q"qu?j(k)];, (17.48)

4,5=1
where the coefficients R, (k) are defined as

R%(k) = (& - B9 - #D)(K) (17.49)

17.2.2 OQOut-side-long coordinate system

In the practical calculations it is useful to choose the coordinate system in such a
way that the vector k has only two non-zero components

k= (k.,0,k)). (17.50)

The z-axis agrees here with the beam axis and determines the long direction. In
the transverse plane, the z-axis is chosen parallel to the vector component of the
momentum of a pair, which is transverse to the beam direction. In this way the
out direction is fixed. The remaining y-axis (of the orthogonal right-handed frame)
determines the side direction. Similarly to Eq. (17.50), we have

B= (ﬂJ_, 0,8 - | (17.51)

The symmetric matrix R; (k) has 6 independent coefficients. In the out-side-long
coordinate system the dlagonal elements are

21 (k) = B2, (k) = (& — BLE))(K),
B,(K) = R (k) = @)(K), (17.52)
R2,(K) = R2,0g (k) = (2 — B;1)2) (K),
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whereas the off-diagonal elements have the form

R}, (k) = Riy—siae(k) = (& — Bo1) §)(k),
R33(k) = R2ge_tong(k) = (5(2 — B1)) (k), (17.53)
R%l(k) = Rlzong—out(k) = ((2 - ﬂllg)(i" - IB-LE)>(k)

17.2.2.1 Boost-invariant cylindrically symmetric sources

For cylindrically symmetric emission functions §(k) = 0, since we have a reflection
symmetry with respect to the side direction, y — —y. In this case the radii Rout—side
and Rgide—long Vanish, since they are linear in §. If our system is boost-invariant,
similar symmetry arguments hold for the z-axis, and the terms linear in Z vanish as
well. This leads to further simplifications. In the longitudinally comoving system
(LCMS), where in addition 3 = 0, we find

R2,.(k) = (& — BLD)?)(K),
R240(k) = (7)(K), (17.54)
R} e (k) = (2%)(K),

and

Rzut——side(k) = Rgide—long(k) =R} (k) =0. (1755)

(o} long—out

Moreover, in this case the correlation function becomes
c (ka q) =1+exp [_Rgut(kl)qgut - Rzide(kl)qgide - Rlzong(kl)QI20ng] ) (1756)

where gous = ¢, gside = ¢, and Qiong = ¢>; compare Eq. (4.12).

17.2.2.2 Determination of HBT radii in model calculations

Suppose that our theoretical model yields a boost-invariant cylindrically symmetric
emission function S(z,k). The formalism outlined above may be directly used to
evaluate the HBT radii: Rout(kL ), Rside(k1), and Riong(kL ), provided the emission
function S(z,k) is indeed well reproduced by the Gaussian function. In each case
we calculate the Fourier transform, compare Eq. (15.35),

S(ky,q) = / d*z e'%® S(x;k,,0,0), (17.57)
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y
P1
q
P2
k=(k.,0,0), q=(o;qside;0)
X
y
k
P y
St
P2 q
k=(k_;_,0,0), CI=(%ut,0,0)
X
z
P
q
P2
k=(k.,0,0), Q=(°,°,Qtong)
X

Fig. 17.1 Standard parametrizations of the vectors k and q used to determine the HBT
radii Rside, Rout and Rlong'

where the three-vector k has been pointed along the z-axis, and the four-vector §;
is one out of the three possible choices i = out, side, long,

Gout = (AEouta Qout, 0, O) ) ‘
side = (AEside, 0, Gside, 0), (17.58)
QIOng = (AElong; 0, 0, q10ng) .
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Only in the case of the out-radius, the difference between the energies of the two
pions does not vanish

AFEqu = \/m%- + (k?_[_ + ‘Iout/z)z — \/m?, + (kJ_ - qout/2)2. (1759)
In the two remaining cases we find, see Fig. 17.1,
AFEsige = AElong =0. (1760)

Following (17.56), the HBT radii may be calculated as the derivatives

o 0 |18k
P 0t | 5%(k.,0)

(17.61)

a=0

17.3 Monte-Carlo approach

Many theoretical models of heavy-ion collisions are coupled to the Monte-Carlo
codes that may serve as event generators. With such a model at hand, the corre-
lation function for identical pions may be obtained with the two-particle method
[18,19]. In this approach the evaluation of the correlation function is reduced to
the calculation of the following expression

> ; da (a—pi +p;) 0a (k— % [pi + p;]) [¥(a*, )
Cla,k) = —2= , (17.62)
( S5 a(a-pirp) ba (kT bt p;) »
T
where §a denotes the box function 3

1, if <A <é, < A
5A(p)={ , 1 !pwl_ 2’|py|_ 5 |sz_ 3

(17.63)
0, otherwise.

In the numerator of Eq. (17.62) we calculate the sum of the squares of modules
of the wave function determined for all pion pairs with the relative momentum q
and the pair average momentum k. For each pair the wave function ¥(q*,r*) is
calculated in the rest frame of the pair; q* and r* denote the relative momentum
and the relative distance in the pair rest frame, respectively. In the denominator
of Eq. (17.62) we put the number of pairs with the relative momentum q and the
average momentum k. The correlation function (17.62) is then expressed with the
help of the Bertsch-Pratt coordinates kr, gout, gside, long and approximated by the
formula (17.56).

17.4 HBT data vs. theoretical expectations

The technique of the HBT correlations has beén developed with the aim of measur-
ing the pion emission regions. It has been soon realized, however, that the widths of

3In [18,19] one uses the bin resolution A =5 MeV.
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the correlation functions determine the sizes of the regions where the pions are cor-
related rather than the overall sizes of the physical systems from which the pions are
emitted. For example, it is commonly observed that the correlation radii decrease
with the increasing average momentum of the pair. This effect may be explained by
the collective expansion of matter that collimates the emitted particles [20] — the
fast pions have small relative momenta and are sensitive to Bose-Einstein statistics
only if they are emitted from the neighboring spacetime points. After Makhlin and
Sinyukov [21] we say that the correlation functlons measure the homogeneity lengths
of the system.

Much effort has been also put into better understanding of the repulsive Coulomb
effects on the correlation function [22-24]. The corrections to the Gaussian form
of the correlation function (4.12) have been worked out for this case. We refer
to the modified form used in the fits as to the Bowler-Sinyukov formula. Besides
the final state Coulomb interactions, also the final state strong interactions are
studied [25, 26].

The potential ability of the correlation measurement to deliver information about
the time extension of the system created in heavy-ion collisions was an inspiring
point for many studies that connected the HBT technique with the analysis of the
phase transition between the quark-gluon plasma and a hadron gas. The main
argument used in those studies was that the first order phase transition should
manifest itself by the long living fireball [27-30]. In the studies of the correlation
functions, this behavior would be reflected in the large values of the ratio Rous/ Rside.

One of the spectacular RHIC results is that the measured ratio Rout/ Rsige is
close to unity, see Figs. 4.7 and 4.8. This result contradicts the conjecture that the
deconfinement phase transition is of the first order. There are, however, further
problems with the theoretical description of the HBT radii, since most of the hy-
drodynamic and kinetic models are not able to reproduce the experimental HBT
results [31,32]. This problem is known as the RHIC HBT puzzle. It is worth men-
tioning that the failure of the kinetic and hydrodynamic models may be contrasted
with the successes of simple thermal models which consistently descrlbe one- and
two-particle observations, for example, see [33]. o

For more information about the pion correlations we refer the reader to the
review articles [5,6,12,34-39].
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Chapter 18

Exercises to PART V

Exercise 18.1. Very simple model for the correlation function.
Show that the model introduced in Sec. 17.1.3 may be defined equivalently by the
density operator of the form

b= / ¢ a}x)p(x) (x].

This form of / describes a single particle mixed state that is an incoherent super-
position of pure states, each corresponding to a given production point. Calculate
the correlation function for the two cases: i) p(x) = po = const. for |x| < Rg and
p(x) = 0 for |x| > Rg, ii) p(x) = exp(—x2/)\). The parameters po, Rg and \ are
real constants. Show that the models i) and ii) are equivalent for small values of
the relative momentum q if Rg = v/5\.

Exercise 18.2. Zajc model.
Consider a model for the emission function proposed by Zajc,

S(t,%,p) = NyN exp [_5(_1-1——32) (7’;% 2 ;f If P2>] 5,  (18.1)

where N, Ry, Py and 0 < s < 1 are parameters, and

Ey Rs = Rp\/1 - s2. (18.2)

N = GrR, By’

Calculate the correlation function using Eq. (17.22) and then Eq. (17.24). Compare '
the results.

Answers: If Eq. (17.22) is used one gets
C(a,k) = 1+ exp (—Riprq?), - (183)

where

Ripy = B2 ( @R:_PO)?) . (18.4)

If Eq. (17.24) is used, then the form (18.3) is valid but Rygr is reduced to R,.

261
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Exercise 18.3. Boost-invariant emission function.
Consider a system that is described by the boost-invariant and cylindrically sym-
metric emission function

S(z,p) = Ti—(%?"—‘-@ £r) 87— m) (185)

x exp [~ (m_ cosh(n — y) cosh?| — p) cos(¢ — ¢p)sinhd )],

where the function f(r) describes the distribution of emitting sources in the trans-
verse plane, 3 and 7; are constants, and ¥ is the transverse fluid rapidity that may
depend on the transverse position 7.

i) Make the substitution

p = (pz,py,p2) — k= (k1,0,0)

and using Eq. (17.57) show that the Fourier transforms of the emission function
(18.5) in the side, out, and long directions may be expressed by the following ex-
pressions:

oo

/rdr f(r) K1(Bmy coshd, )
0
X Io(ﬁkl sinh 1.9_1_, qsider), (18.6)

TEM L

S(kL1,gside) = 52

o0
S(kL,qout) = e /r dr f(r) K1(Bmy cosh?® | — iAEousTs)
0

272
x Ip(Bky sinh | — igoutT), (18.7)
T
Sk 1y tong) = "ot [ 7 £ a (B cosh 9.1 ng)
0
X Io(ﬁku_ Sinh‘l%_). (188)

The functions Zp and K; are defined below by Eq. (25.33) and Eq. (25.42), respec-
tively.

ii) Suppose that the function f(r) is peaked at some value of 7, f(r) ~ d(r — Rgeo).
In this case, that corresponds physically to the surface emission, the integrals on
the right-hand-side of Egs. (18.6) — (18.8) may be replaced by the values of the
integrands at 7 = Rgeo. Using Eqgs. (18.6) and (17.61) show that the side radius
may be calculated from the formula

0 [Z2(a,b)
2 p2 o\a,
Rsiae = ~FRgeo 5 [Ig(a, 0)] . (18.9)
where
a = ﬂk_]_ sinh ’(9_]_(Rgeo), b= QSideRgeo‘ (18.10)
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In the next step, using Eq. (25.33) show that

I1(a)
2 _p2 11
Riqe = Rge, alo(@) (18.11)
Expanding this equation for small values of a one gets
Rie a®
Ry = ; (1 - 'g) . - (1812

Thus, if the expansion may be neglected we obtain the pure geonietric result
RZ%,. = R2,,/2. We also observe that the flow reduces the side radius.

iii) Similarly to the previous case, using Egs. (18.8) and (17.61) show that the long
radius may be calculated from the formula

8 [K3(a,b)
2 _ _.2 9 [Aila,
Riong = =71 552 [/cf(a, 0) | |p20’ _(18'13)
where
a = fm, cosh?| (Rgeo), b= qiongTt- (18.14)
Using Eq. (25.42) derive the Herrmann-Bertsch formula
K3 (a)
2 _ 2 02
Rlong = Tf aKl (a) . (18.15)
This time, expanding this equation for large values of a one gets
2 2
rRR == UES (18.16)

long = "7 T my coshd | (Rgeo)

Even for very large transverse flow, reaching half the speed of light, we have
cosh?d; =~ 1. Then, Eq. (18.16) is reduced to the famous Makhlin-Sinyukov formula
T
ong = —_— . 1

Riong = 7¢ o (18.17)
Equation (18.17) has been frequently used in the estimates of Riong. However, we
must remember that the limit a > 1 is sometimes not very well justified. In such
situation Eq. (18.15) should be used.

iv) Use similar methods to obtain Roy;. In this case, in the limit of small transverse
flow and large Sm , we find the Chapman-Scotto-Heinz formula
k% r3T?

2m4

Rgut ~ R:ide + (18'18)
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Chapter 19

Historical Perspective: Fermi Statistical
Model

The use of relativistic hydrodynamics to describe particle production in hadronic
collisions has a long history which starts with the famous work of Landau in the
early 1950s [1], see also [2,3]. Landau’s considerations were preceded, however, by
a few approaches that used pure statistical and thermodynamic concepts in the
analysis of the hadronic collisions [4-6]. Such approaches may be regarded as pre-
hydrodynamic models and we think it is important to present them before we turn
to the discussion of the genuine hydrodynamic models.

Probably, the most influential early statistical model of hadron production was
formulated by Fermi [6,7]. Fermi assumed that when two relativistic nucleons
collide, the energy available in their center-of-mass frame is released in a very small
volume V', whose magnitude corresponds to the Lorentz contracted characteristic
pion field volume Vy, i.e., V = 2mnVo/+/s, where Vy = (4/3) 7R3 with R, = 1/m,,
and /s is the center-of-mass energy. Subsequently, such a dense system decays into
one of many accessible multiparticle states. The decay probability is calculated in
the framework of the standard statistical physics.

The reason for the introduction of the statistical approach was the breakdown
of the perturbation theory in the attempts to describe strongly interacting systems.
Clearly, the large values of the coupling constant prohibit the application of the
perturbation theory. On the other hand, the large value of the coupling is responsi-
ble for the phenomenon of multiple production of particles, which is a characteristic
feature of strong interactions (in QED, where the coupling is small, the production
of many particle states is suppressed by the appropriate power of the fine structure
constant). Generally speaking, the probability of the transition into a given state is
proportional to the square of the corresponding matrix element and to the density
of states. In the statistical description the matrix elements are treated as constants
and the main effect comes from the phase space. Thus, the statistical approach
represents a simple theoretical modeling of collisions which may be regarded as the
complementary approach to the perturbation schemes which typically break down
at a certain scale. The main heuristic argument for the justification of the use of
the statistical approach is that the role of the phase space naturally grows with the
increasing energy of the collisions.
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19.1 Pion production in low-energy nucleon collisions

The first physical example considered in Ref. [6] is the pion production in low-energy
nucleon-nucleon collisions. This case was chosen mainly because of its simplicity
— only a few states of rather low energy are taken into account in this analysis.
In fact, Fermi considers exactly two states: the state (a) where the two nucleons
scatter elastically, and the state (b) in which an additional pion is formed. In the
case (b) we have altogether 3 particles — two nucleons and a pion. In view of the
introductory remarks presented above, the application of the statistical approach to
describe low-energy collisions cannot be sufficiently well justified. The work of Fermi
showed, however, that this kind of approach led to surprisingly good description of
the data. This success evidently inspired Fermi and his followers to apply the
statistical approach to various hadronic processes.

The general formula used in the Fermi model to find the probability for the
formation of the state with n particles has the form

(n-1)
4 ] 1 QW) (19.1)
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Here W is the total energy of the colliding system, dQ/dW is the number of states
per unit energy, and V is the interaction volume. The power n — 1 arises from
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